summaryrefslogtreecommitdiff
path: root/candle-nn/tests
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-08-20 23:19:15 +0100
committerGitHub <noreply@github.com>2023-08-20 23:19:15 +0100
commit11c7e7bd672bea0da05207d8fdea0dfe8bb14e46 (patch)
tree5090e6f687fb8e3819867d00224cb13556036bfd /candle-nn/tests
parenta1812f934f4e0830ed3c2f147d13837ccf67f2bd (diff)
downloadcandle-11c7e7bd672bea0da05207d8fdea0dfe8bb14e46.tar.gz
candle-11c7e7bd672bea0da05207d8fdea0dfe8bb14e46.tar.bz2
candle-11c7e7bd672bea0da05207d8fdea0dfe8bb14e46.zip
Some fixes for yolo-v3. (#529)
* Some fixes for yolo-v3. * Use the running stats for inference in the batch-norm layer. * Get some proper predictions for yolo. * Avoid the quadratic insertion.
Diffstat (limited to 'candle-nn/tests')
-rw-r--r--candle-nn/tests/batch_norm.rs14
1 files changed, 9 insertions, 5 deletions
diff --git a/candle-nn/tests/batch_norm.rs b/candle-nn/tests/batch_norm.rs
index d5c72dfc..7a3cfc18 100644
--- a/candle-nn/tests/batch_norm.rs
+++ b/candle-nn/tests/batch_norm.rs
@@ -7,8 +7,8 @@ extern crate accelerate_src;
mod test_utils;
use anyhow::Result;
-use candle::{Device, Tensor};
-use candle_nn::{BatchNorm, Module};
+use candle::{DType, Device, Tensor};
+use candle_nn::BatchNorm;
/* The test below has been generated using the following PyTorch code:
import torch
@@ -21,7 +21,9 @@ print(output.flatten())
*/
#[test]
fn batch_norm() -> Result<()> {
- let bn = BatchNorm::new_no_bias(5, 1e-8)?;
+ let running_mean = Tensor::zeros(5, DType::F32, &Device::Cpu)?;
+ let running_var = Tensor::ones(5, DType::F32, &Device::Cpu)?;
+ let bn = BatchNorm::new_no_bias(5, running_mean.clone(), running_var.clone(), 1e-8)?;
let input: [f32; 120] = [
-0.7493, -1.0410, 1.6977, -0.6579, 1.7982, -0.0087, 0.2812, -0.1190, 0.2908, -0.5975,
-0.0278, -0.2138, -1.3130, -1.6048, -2.2028, 0.9452, 0.4002, 0.0831, 1.0004, 0.1860,
@@ -37,7 +39,7 @@ fn batch_norm() -> Result<()> {
1.4252, -0.9115, -0.1093, -0.3100, -0.6734, -1.4357, 0.9205,
];
let input = Tensor::new(&input, &Device::Cpu)?.reshape((2, 5, 3, 4))?;
- let output = bn.forward(&input)?;
+ let output = bn.forward_learning(&input)?;
assert_eq!(output.dims(), &[2, 5, 3, 4]);
let output = output.flatten_all()?;
assert_eq!(
@@ -59,11 +61,13 @@ fn batch_norm() -> Result<()> {
);
let bn2 = BatchNorm::new(
5,
+ running_mean.clone(),
+ running_var.clone(),
Tensor::new(&[0.5f32], &Device::Cpu)?.broadcast_as(5)?,
Tensor::new(&[-1.5f32], &Device::Cpu)?.broadcast_as(5)?,
1e-8,
)?;
- let output2 = bn2.forward(&input)?;
+ let output2 = bn2.forward_learning(&input)?;
assert_eq!(output2.dims(), &[2, 5, 3, 4]);
let output2 = output2.flatten_all()?;
let diff2 = ((output2 - (output * 0.5)?)? + 1.5)?.sqr()?;