summaryrefslogtreecommitdiff
path: root/candle-nn/tests
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2024-09-23 13:14:32 +0200
committerGitHub <noreply@github.com>2024-09-23 13:14:32 +0200
commitd01207dbf3fb0ad614e7915c8f5706fbc09902fb (patch)
treebd8303c3d7acd097777485f220acd14aac73bd83 /candle-nn/tests
parent8097559c1a293d26cf9cd65d92d9cb4696197c2e (diff)
downloadcandle-d01207dbf3fb0ad614e7915c8f5706fbc09902fb.tar.gz
candle-d01207dbf3fb0ad614e7915c8f5706fbc09902fb.tar.bz2
candle-d01207dbf3fb0ad614e7915c8f5706fbc09902fb.zip
Add a RotatingKVCache. (#2493)
* Add a RotatingKVCache. * Add some KvCache tests. * Test the reset too. * More kv-cache testing. * More tests for the rotating kv-cache. * Improve the api for the rotating cache so that the whole src tensor gets returned when it's overlarge. * Handle contiguity + bugfix + use in mimi. * Add a way to test the mimi streaming mode. * Mimi streaming fixes. * More rotating kv-cache. * Fix the attn mask generation. * Handle the abs case. * Add some tests for the generated mask.
Diffstat (limited to 'candle-nn/tests')
-rw-r--r--candle-nn/tests/kv_cache.rs110
1 files changed, 110 insertions, 0 deletions
diff --git a/candle-nn/tests/kv_cache.rs b/candle-nn/tests/kv_cache.rs
new file mode 100644
index 00000000..b8d2ec48
--- /dev/null
+++ b/candle-nn/tests/kv_cache.rs
@@ -0,0 +1,110 @@
+#[cfg(feature = "mkl")]
+extern crate intel_mkl_src;
+
+#[cfg(feature = "accelerate")]
+extern crate accelerate_src;
+
+use candle::{Device, Result, Tensor};
+
+#[test]
+fn kv_cache() -> Result<()> {
+ let mut cache = candle_nn::kv_cache::Cache::new(0, 16);
+ for _ in [0, 1] {
+ assert_eq!(cache.current_seq_len(), 0);
+ let data = cache.current_data()?;
+ assert!(data.is_none());
+ let t = Tensor::new(&[1f32, 2., 3.], &Device::Cpu)?;
+ cache.append(&t)?;
+ let data = cache.current_data()?.unwrap();
+ assert_eq!(data.to_vec1::<f32>()?, [1., 2., 3.]);
+ let t = Tensor::new(&[4f32], &Device::Cpu)?;
+ cache.append(&t)?;
+ let data = cache.current_data()?.unwrap();
+ assert_eq!(data.to_vec1::<f32>()?, [1., 2., 3., 4.]);
+ let t = Tensor::new(&[0f32, 5., 6., 7.], &Device::Cpu)?;
+ cache.append(&t)?;
+ let data = cache.current_data()?.unwrap();
+ assert_eq!(data.to_vec1::<f32>()?, [1., 2., 3., 4., 0., 5., 6., 7.]);
+ assert_eq!(cache.current_seq_len(), 8);
+ cache.reset();
+ }
+ Ok(())
+}
+
+#[test]
+fn rotating_kv_cache() -> Result<()> {
+ let mut cache = candle_nn::kv_cache::RotatingCache::new(0, 6);
+ for _ in [0, 1] {
+ assert_eq!(cache.offset(), 0);
+ assert_eq!(cache.current_seq_len(), 0);
+ let data = cache.current_data()?;
+ assert!(data.is_none());
+ let t = Tensor::new(&[1., 2., 3.], &Device::Cpu)?;
+ let data = cache.append(&t)?;
+ assert_eq!(data.to_vec1::<f64>()?, [1., 2., 3.]);
+ let t = Tensor::new(&[4.], &Device::Cpu)?;
+ let data = cache.append(&t)?;
+ assert_eq!(data.to_vec1::<f64>()?, [1., 2., 3., 4.]);
+ let t = Tensor::new(&[0., 5., 6., 7.], &Device::Cpu)?;
+ let data = cache.append(&t)?;
+ assert_eq!(data.to_vec1::<f64>()?, [6., 7., 3., 4., 0., 5.]);
+ assert_eq!(cache.current_seq_len(), 8);
+ assert_eq!(cache.offset(), 2);
+
+ let t = Tensor::new(&[8.], &Device::Cpu)?;
+ let data = cache.append(&t)?;
+ assert_eq!(data.to_vec1::<f64>()?, [6., 7., 8., 4., 0., 5.]);
+ assert_eq!(cache.current_seq_len(), 9);
+ assert_eq!(cache.offset(), 3);
+
+ let t = Tensor::new(&[9., 10., 11.], &Device::Cpu)?;
+ let data = cache.append(&t)?;
+ assert_eq!(data.to_vec1::<f64>()?, [6., 7., 8., 9., 10., 11.]);
+ assert_eq!(cache.current_seq_len(), 12);
+ assert_eq!(cache.offset(), 0);
+
+ let t = Tensor::new(&[12.], &Device::Cpu)?;
+ let data = cache.append(&t)?;
+ assert_eq!(data.to_vec1::<f64>()?, [12., 7., 8., 9., 10., 11.]);
+ assert_eq!(cache.current_seq_len(), 13);
+ assert_eq!(cache.offset(), 1);
+
+ let mask = cache.attn_mask(2, &Device::Cpu)?.unwrap();
+ assert_eq!(
+ mask.to_vec2::<u8>()?,
+ &[[0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
+ );
+ let mask = cache.attn_mask(3, &Device::Cpu)?.unwrap();
+ assert_eq!(
+ mask.to_vec2::<u8>()?,
+ &[[0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0]],
+ );
+ let t = Tensor::new(&[0., 1., 2., 3., 4., 5., 6., 7., 8.], &Device::Cpu)?;
+ let data = cache.append(&t)?;
+ assert_eq!(data.to_vec1::<f64>()?, [0., 1., 2., 3., 4., 5., 6., 7., 8.]);
+ assert_eq!(cache.current_seq_len(), 22);
+ assert_eq!(cache.offset(), 0);
+
+ let mask = cache.attn_mask(1, &Device::Cpu)?;
+ assert!(mask.is_none());
+ let mask = cache.attn_mask(2, &Device::Cpu)?.unwrap();
+ assert_eq!(
+ mask.to_vec2::<u8>()?,
+ &[[0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
+ );
+ let mask = cache.attn_mask(3, &Device::Cpu)?.unwrap();
+ assert_eq!(
+ mask.to_vec2::<u8>()?,
+ &[[0, 1, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0]]
+ );
+ let t = Tensor::new(&[42.], &Device::Cpu)?;
+
+ let data = cache.append(&t)?;
+ assert_eq!(data.to_vec1::<f64>()?, [42., 4., 5., 6., 7., 8.]);
+ assert_eq!(cache.current_seq_len(), 23);
+ assert_eq!(cache.offset(), 1);
+
+ cache.reset();
+ }
+ Ok(())
+}