summaryrefslogtreecommitdiff
path: root/candle-nn
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2024-05-24 15:58:01 +0200
committerGitHub <noreply@github.com>2024-05-24 15:58:01 +0200
commit1df2bddccfbb4ab511a8cc3a87476d1fa72416bc (patch)
tree3633bc51e3bac3d542d9dfe06d509db20f5374e9 /candle-nn
parent6f0b807ffd553fed27325a2a118b0e30bb6d9cbd (diff)
downloadcandle-1df2bddccfbb4ab511a8cc3a87476d1fa72416bc.tar.gz
candle-1df2bddccfbb4ab511a8cc3a87476d1fa72416bc.tar.bz2
candle-1df2bddccfbb4ab511a8cc3a87476d1fa72416bc.zip
Add the layernorm specialized op. (#2212)
* Add the layernorm cuda kernels. * Dedicated layer norm op. * Add the slower variant. * Plug the cuda implementation. * Add the metal variant. * Add a dedicated test. * Bugfix.
Diffstat (limited to 'candle-nn')
-rw-r--r--candle-nn/src/ops.rs258
-rw-r--r--candle-nn/tests/ops.rs27
2 files changed, 280 insertions, 5 deletions
diff --git a/candle-nn/src/ops.rs b/candle-nn/src/ops.rs
index eabc95d8..2a76ee5e 100644
--- a/candle-nn/src/ops.rs
+++ b/candle-nn/src/ops.rs
@@ -1,4 +1,4 @@
-use candle::{CpuStorage, DType, Layout, Result, Shape, Tensor};
+use candle::{CpuStorage, DType, Layout, Result, Shape, Tensor, D};
use rayon::prelude::*;
/// Applies the softmax function to the input tensor, rescaling the element so that elements on
@@ -39,7 +39,7 @@ pub fn silu(xs: &Tensor) -> Result<Tensor> {
}
pub fn swiglu(xs: &Tensor) -> Result<Tensor> {
- let xs = xs.chunk(2, candle::D::Minus1)?;
+ let xs = xs.chunk(2, D::Minus1)?;
&xs[0].silu()? * &xs[1]
}
@@ -620,15 +620,15 @@ pub fn rms_norm_slow(x: &Tensor, alpha: &Tensor, eps: f32) -> Result<Tensor> {
DType::F16 | DType::BF16 => DType::F32,
d => d,
};
- let hidden_size = x.dim(candle::D::Minus1)?;
+ let hidden_size = x.dim(D::Minus1)?;
let x = x.to_dtype(internal_dtype)?;
- let norm_x = (x.sqr()?.sum_keepdim(candle::D::Minus1)? / hidden_size as f64)?;
+ let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?;
let x_normed = x.broadcast_div(&(norm_x + eps as f64)?.sqrt()?)?;
x_normed.to_dtype(x_dtype)?.broadcast_mul(alpha)
}
pub fn rms_norm(xs: &Tensor, alpha: &Tensor, eps: f32) -> Result<Tensor> {
- let hidden_size_xs = xs.dim(candle::D::Minus1)?;
+ let hidden_size_xs = xs.dim(D::Minus1)?;
let hidden_size_alpha = alpha.dims1()?;
if hidden_size_xs != hidden_size_alpha {
candle::bail!(
@@ -640,6 +640,254 @@ pub fn rms_norm(xs: &Tensor, alpha: &Tensor, eps: f32) -> Result<Tensor> {
xs.apply_op2_no_bwd(alpha, &RmsNorm { eps })
}
+#[derive(Debug, Clone)]
+struct LayerNorm {
+ eps: f32,
+}
+
+impl candle::CustomOp3 for LayerNorm {
+ fn name(&self) -> &'static str {
+ "layer-norm"
+ }
+
+ fn cpu_fwd(
+ &self,
+ s1: &CpuStorage,
+ l1: &Layout,
+ s2: &CpuStorage,
+ l2: &Layout,
+ s3: &CpuStorage,
+ l3: &Layout,
+ ) -> Result<(CpuStorage, Shape)> {
+ use candle::backend::BackendStorage;
+
+ let eps = self.eps;
+ fn inner<
+ T: candle::WithDType
+ + num_traits::Float
+ + num_traits::AsPrimitive<f32>
+ + num_traits::FromPrimitive,
+ >(
+ src: &[T],
+ layout: &Layout,
+ alpha: &[T],
+ alpha_layout: &Layout,
+ beta: &[T],
+ beta_layout: &Layout,
+ eps: f32,
+ ) -> Result<(CpuStorage, Shape)> {
+ let src = match layout.contiguous_offsets() {
+ None => candle::bail!("input has to be contiguous"),
+ Some((o1, o2)) => &src[o1..o2],
+ };
+ let alpha = match alpha_layout.contiguous_offsets() {
+ None => candle::bail!("alpha has to be contiguous"),
+ Some((o1, o2)) => &alpha[o1..o2],
+ };
+ let beta = match beta_layout.contiguous_offsets() {
+ None => candle::bail!("beta has to be contiguous"),
+ Some((o1, o2)) => &beta[o1..o2],
+ };
+ let el_count = layout.shape().elem_count();
+ let dims = layout.shape().dims();
+ let dim_m1 = dims[dims.len() - 1];
+ let mut dst = vec![T::zero(); el_count];
+ src.par_chunks(dim_m1)
+ .zip(dst.par_chunks_mut(dim_m1))
+ .for_each(|(src, dst)| {
+ let mut sum = 0f32;
+ let mut sum2 = 0f32;
+ for v in src {
+ let v = v.as_();
+ sum += v;
+ sum2 += v * v;
+ }
+ let mean = sum / dim_m1 as f32;
+ let var = sum2 / dim_m1 as f32 - mean * mean;
+ let inv_std = (var + eps).sqrt().recip();
+ for ((d, s), (alpha, beta)) in
+ dst.iter_mut().zip(src.iter()).zip(alpha.iter().zip(beta))
+ {
+ let alpha = alpha.as_();
+ let beta = beta.as_();
+ let d_ = (s.as_() - mean) * inv_std * alpha + beta;
+ *d = T::from_f32(d_).unwrap_or_else(T::nan);
+ }
+ });
+ let storage = candle::WithDType::to_cpu_storage_owned(dst);
+ Ok((storage, Shape::from_dims(dims)))
+ }
+
+ use CpuStorage as C;
+ match (s1, s2, s3) {
+ (C::BF16(s1), C::BF16(s2), C::BF16(s3)) => {
+ inner::<half::bf16>(s1, l1, s2, l2, s3, l3, eps)
+ }
+ (C::F16(s1), C::F16(s2), C::F16(s3)) => inner::<half::f16>(s1, l1, s2, l2, s3, l3, eps),
+ (C::F32(s1), C::F32(s2), C::F32(s3)) => inner::<f32>(s1, l1, s2, l2, s3, l3, eps),
+ _ => candle::bail!("unsupported dtype for rmsnorm {:?}", s1.dtype()),
+ }
+ }
+
+ #[cfg(feature = "cuda")]
+ fn cuda_fwd(
+ &self,
+ s1: &candle::CudaStorage,
+ l1: &Layout,
+ s2: &candle::CudaStorage,
+ l2: &Layout,
+ s3: &candle::CudaStorage,
+ l3: &Layout,
+ ) -> Result<(candle::CudaStorage, Shape)> {
+ use candle::cuda_backend::cudarc::driver::{
+ CudaSlice, DeviceRepr, LaunchAsync, LaunchConfig,
+ };
+ use candle::cuda_backend::{kernel_name, kernels, Map3, WrapErr};
+ use candle::{CudaDevice, WithDType};
+
+ struct S {
+ eps: f32,
+ }
+ impl Map3 for S {
+ fn f<T: DeviceRepr + WithDType>(
+ &self,
+ src: &CudaSlice<T>,
+ layout: &Layout,
+ alpha: &CudaSlice<T>,
+ alpha_layout: &Layout,
+ beta: &CudaSlice<T>,
+ beta_layout: &Layout,
+ dev: &CudaDevice,
+ ) -> Result<CudaSlice<T>> {
+ let src = match layout.contiguous_offsets() {
+ None => candle::bail!("input has to be contiguous"),
+ Some((o1, o2)) => src.slice(o1..o2),
+ };
+ let alpha = match alpha_layout.contiguous_offsets() {
+ None => candle::bail!("alpha has to be contiguous"),
+ Some((o1, o2)) => alpha.slice(o1..o2),
+ };
+ let beta = match beta_layout.contiguous_offsets() {
+ None => candle::bail!("beta has to be contiguous"),
+ Some((o1, o2)) => beta.slice(o1..o2),
+ };
+ let el = layout.shape().elem_count();
+ let dims = layout.shape().dims();
+ let dim_m1 = dims[dims.len() - 1];
+ let (n_rows, n_cols) = (el / dim_m1, dim_m1);
+
+ let cfg = LaunchConfig {
+ grid_dim: (n_rows as u32, 1, 1),
+ block_dim: (1024, 1, 1),
+ shared_mem_bytes: 0,
+ };
+ let func = dev.get_or_load_func(&kernel_name::<T>("layernorm"), kernels::REDUCE)?;
+ // SAFETY: Set later by running the kernel.
+ let dst = unsafe { dev.alloc::<T>(el) }.w()?;
+ let params = (&src, &dst, &alpha, &beta, n_cols as i32, self.eps);
+ // SAFETY: ffi.
+ unsafe { func.launch(cfg, params) }.w()?;
+ Ok(dst)
+ }
+ }
+
+ use candle::backend::BackendStorage;
+ let dev = s1.device();
+ let slice = S { eps: self.eps }.map(&s1.slice, l1, &s2.slice, l2, &s3.slice, l3, dev)?;
+ let dst = candle::cuda_backend::CudaStorage {
+ slice,
+ device: dev.clone(),
+ };
+ Ok((dst, l1.shape().clone()))
+ }
+
+ #[cfg(feature = "metal")]
+ fn metal_fwd(
+ &self,
+ s1: &candle::MetalStorage,
+ l1: &Layout,
+ s2: &candle::MetalStorage,
+ l2: &Layout,
+ s3: &candle::MetalStorage,
+ l3: &Layout,
+ ) -> Result<(candle::MetalStorage, Shape)> {
+ use candle::backend::BackendStorage;
+ let device = s1.device();
+ let command_buffer = device.command_buffer()?;
+ let kernels = device.kernels();
+ let name = match (s1.dtype(), s2.dtype(), s3.dtype()) {
+ (DType::F32, DType::F32, DType::F32) => "layernorm_f32",
+ (DType::F16, DType::F16, DType::F16) => "layernorm_f16",
+ (DType::BF16, DType::BF16, DType::BF16) => "layernorm_bf16",
+ (dt1, dt2, dt3) => {
+ candle::bail!("layernorm is not implemented for {dt1:?} {dt2:?} {dt3:?}")
+ }
+ };
+
+ if !(l1.is_contiguous() && l2.is_contiguous() && l3.is_contiguous()) {
+ candle::bail!("Non contiguous layernorm is not implemented");
+ }
+
+ let last_dim = l1.dims()[l1.shape().rank() - 1];
+ let elem_count = l1.shape().elem_count();
+ let output = device.new_buffer(elem_count, s1.dtype(), "layernorm")?;
+ candle_metal_kernels::call_layer_norm(
+ device.metal_device(),
+ &command_buffer,
+ kernels,
+ name,
+ elem_count,
+ last_dim,
+ self.eps,
+ s1.buffer(),
+ l1.start_offset() * s1.dtype().size_in_bytes(),
+ s2.buffer(),
+ l2.start_offset() * s2.dtype().size_in_bytes(),
+ s3.buffer(),
+ l3.start_offset() * s3.dtype().size_in_bytes(),
+ &output,
+ )
+ .map_err(candle::Error::wrap)?;
+ let newstorage = candle::MetalStorage::new(output, device.clone(), elem_count, s1.dtype());
+ Ok((newstorage, l1.shape().clone()))
+ }
+}
+
+pub fn layer_norm_slow(x: &Tensor, alpha: &Tensor, beta: &Tensor, eps: f32) -> Result<Tensor> {
+ let x_dtype = x.dtype();
+ let internal_dtype = match x_dtype {
+ DType::F16 | DType::BF16 => DType::F32,
+ d => d,
+ };
+ let hidden_size = x.dim(D::Minus1)?;
+ let x = x.to_dtype(internal_dtype)?;
+ let x = {
+ let mean_x = (x.sum_keepdim(D::Minus1)? / hidden_size as f64)?;
+ x.broadcast_sub(&mean_x)?
+ };
+ let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?;
+ let x_normed = x.broadcast_div(&(norm_x + eps as f64)?.sqrt()?)?;
+ x_normed
+ .to_dtype(x_dtype)?
+ .broadcast_mul(alpha)?
+ .broadcast_add(beta)
+}
+
+pub fn layer_norm(xs: &Tensor, alpha: &Tensor, beta: &Tensor, eps: f32) -> Result<Tensor> {
+ let hidden_size_xs = xs.dim(D::Minus1)?;
+ let hidden_size_alpha = alpha.dims1()?;
+ let hidden_size_beta = beta.dims1()?;
+ if hidden_size_xs != hidden_size_alpha || hidden_size_xs != hidden_size_beta {
+ candle::bail!(
+ "shape mismatch in layer-norm src: {:?} alpha: {:?} beta: {:?}",
+ xs.shape(),
+ alpha.shape(),
+ beta.shape()
+ )
+ }
+ xs.apply_op3_no_bwd(alpha, beta, &LayerNorm { eps })
+}
+
// https://pytorch.org/docs/stable/generated/torch.nn.PixelShuffle.html
pub fn pixel_shuffle(xs: &Tensor, upscale_factor: usize) -> Result<Tensor> {
let (b_size, c, h, w) = xs.dims4()?;
diff --git a/candle-nn/tests/ops.rs b/candle-nn/tests/ops.rs
index f9cfe46d..65a8fbf2 100644
--- a/candle-nn/tests/ops.rs
+++ b/candle-nn/tests/ops.rs
@@ -77,6 +77,32 @@ fn rms_norm(device: &Device) -> Result<()> {
Ok(())
}
+fn layer_norm(device: &Device) -> Result<()> {
+ let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]];
+ let tensor = Tensor::new(data, device)?;
+ let alpha = Tensor::new(&[1f32, 2f32, 3f32], device)?;
+ let beta = Tensor::new(&[0.5f32, 0f32, -0.2f32], device)?;
+ let t = candle_nn::ops::layer_norm(&tensor, &alpha, &beta, 1e-5)?;
+ assert_eq!(
+ to_vec3_round(&t, 4)?,
+ &[
+ [[0.7673, -2.6726, 3.0071], [-0.7247, 0.0, 3.4742]],
+ [[-0.008, -1.778, 3.991], [1.2071, -2.8284, 1.9213]]
+ ]
+ );
+ let t2 = candle_nn::ops::layer_norm_slow(&tensor, &alpha, &beta, 1e-5)?;
+ assert_eq!(
+ to_vec3_round(&t2, 4)?,
+ &[
+ [[0.7673, -2.6726, 3.0071], [-0.7247, 0.0, 3.4742]],
+ [[-0.008, -1.778, 3.991], [1.2071, -2.8284, 1.9213]]
+ ]
+ );
+ let diff = (t - t2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
+ assert!(diff < 1e-5);
+ Ok(())
+}
+
#[test]
fn softmax_numerical_stability() -> Result<()> {
let dev = &Device::Cpu;
@@ -185,4 +211,5 @@ test_device!(rope, rope_cpu, rope_gpu, rope_metal);
test_device!(rope_thd, rope_thd_cpu, rope_thd_gpu, rope_thd_metal);
test_device!(softmax, softmax_cpu, softmax_gpu, softmax_metal);
test_device!(rms_norm, rms_norm_cpu, rms_norm_gpu, rms_norm_metal);
+test_device!(layer_norm, ln_cpu, ln_gpu, ln_metal);
test_device!(sigmoid, sigmoid_cpu, sigmoid_gpu, sigmoid_metal);