summaryrefslogtreecommitdiff
path: root/candle-nn
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-10-11 19:24:32 +0200
committerGitHub <noreply@github.com>2023-10-11 18:24:32 +0100
commit89b525b5e758218179dd32293e7167e3aae1b28f (patch)
treef343433a30febbf04d414522bb8bbe5f99f8818b /candle-nn
parent37dbbff261f1641db6dc868fc4dded5f8cb25a1f (diff)
downloadcandle-89b525b5e758218179dd32293e7167e3aae1b28f.tar.gz
candle-89b525b5e758218179dd32293e7167e3aae1b28f.tar.bz2
candle-89b525b5e758218179dd32293e7167e3aae1b28f.zip
Convmixer (#1073)
* Only optimize float tensors. * Use full tensors for zeros and ones. * Add a benchmark for the matmul slowness. * Add the convmixer model. * Proper adaptive pooling.
Diffstat (limited to 'candle-nn')
-rw-r--r--candle-nn/examples/cpu_benchmarks.rs4
1 files changed, 2 insertions, 2 deletions
diff --git a/candle-nn/examples/cpu_benchmarks.rs b/candle-nn/examples/cpu_benchmarks.rs
index e58ea727..6007ff6c 100644
--- a/candle-nn/examples/cpu_benchmarks.rs
+++ b/candle-nn/examples/cpu_benchmarks.rs
@@ -185,8 +185,8 @@ impl Benchmark for Matmul {
type PreProcessData = (Tensor, Tensor);
type RunResult = Tensor;
fn preprocess() -> Result<Self::PreProcessData> {
- let lhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?;
- let rhs = Tensor::randn(0f32, 1., (1024, 1024), &Device::Cpu)?;
+ let lhs = Tensor::randn(0f32, 1., (1024 * 4, 1024 * 4), &Device::Cpu)?;
+ let rhs = Tensor::randn(0f32, 1., (1024 * 4, 1), &Device::Cpu)?;
Ok((lhs, rhs))
}