summaryrefslogtreecommitdiff
path: root/candle-nn
diff options
context:
space:
mode:
authorDaniƫl de Kok <me@github.danieldk.eu>2024-02-06 15:26:11 +0100
committerGitHub <noreply@github.com>2024-02-06 15:26:11 +0100
commita90fc5ca5a486e988d39ea69ee3d3bb40a39c017 (patch)
treee53d0d27b5a5843dd0f9ce040ff6e4a65d6776dc /candle-nn
parentadfae2460ac39a76fb15b1543ebe056c1d7b785f (diff)
downloadcandle-a90fc5ca5a486e988d39ea69ee3d3bb40a39c017.tar.gz
candle-a90fc5ca5a486e988d39ea69ee3d3bb40a39c017.tar.bz2
candle-a90fc5ca5a486e988d39ea69ee3d3bb40a39c017.zip
Add `VarBuilder::from_backend` (#1670)
`candle-nn` already exposes a trait to define custom backends. However, it's not possible to actually construct a `VarBuilder` with a custom backend because the constructor is not exposed. This change makes the constructor public and renames it from `new` to `from_backend` to avoid that it is seen as the primary constructor (which could be confusing to users).
Diffstat (limited to 'candle-nn')
-rw-r--r--candle-nn/src/var_builder.rs25
1 files changed, 17 insertions, 8 deletions
diff --git a/candle-nn/src/var_builder.rs b/candle-nn/src/var_builder.rs
index 83c86a6f..33d94c83 100644
--- a/candle-nn/src/var_builder.rs
+++ b/candle-nn/src/var_builder.rs
@@ -412,7 +412,16 @@ impl SimpleBackend for candle::safetensors::BufferedSafetensors {
}
impl<'a> VarBuilder<'a> {
- fn new(backend: Box<dyn SimpleBackend + 'a>, dtype: DType, device: Device) -> Self {
+ /// Initializes a `VarBuilder` using a custom backend.
+ ///
+ /// It is preferred to use one of the more specific constructors. This
+ /// constructor is provided to allow downstream users to define their own
+ /// backends.
+ pub fn from_backend(
+ backend: Box<dyn SimpleBackend + 'a>,
+ dtype: DType,
+ device: Device,
+ ) -> Self {
let data = TensorData {
backend,
dtype,
@@ -427,13 +436,13 @@ impl<'a> VarBuilder<'a> {
/// Initializes a `VarBuilder` that uses zeros for any tensor.
pub fn zeros(dtype: DType, dev: &Device) -> Self {
- Self::new(Box::new(Zeros), dtype, dev.clone())
+ Self::from_backend(Box::new(Zeros), dtype, dev.clone())
}
/// Initializes a `VarBuilder` that retrieves tensors stored in a hashtable. An error is
/// returned if no tensor is available under the requested path or on shape mismatches.
pub fn from_tensors(ts: HashMap<String, Tensor>, dtype: DType, dev: &Device) -> Self {
- Self::new(Box::new(ts), dtype, dev.clone())
+ Self::from_backend(Box::new(ts), dtype, dev.clone())
}
/// Initializes a `VarBuilder` using a `VarMap`. The requested tensors are created and
@@ -443,7 +452,7 @@ impl<'a> VarBuilder<'a> {
/// Note that it is possible to load the tensor values after model creation using the `load`
/// method on `varmap`, this can be used to start model training from an existing checkpoint.
pub fn from_varmap(varmap: &VarMap, dtype: DType, dev: &Device) -> Self {
- Self::new(Box::new(varmap.clone()), dtype, dev.clone())
+ Self::from_backend(Box::new(varmap.clone()), dtype, dev.clone())
}
/// Initializes a `VarBuilder` that retrieves tensors stored in a collection of safetensors
@@ -458,25 +467,25 @@ impl<'a> VarBuilder<'a> {
dev: &Device,
) -> Result<Self> {
let tensors = candle::safetensors::MmapedSafetensors::multi(paths)?;
- Ok(Self::new(Box::new(tensors), dtype, dev.clone()))
+ Ok(Self::from_backend(Box::new(tensors), dtype, dev.clone()))
}
/// Initializes a `VarBuilder` from a binary builder in the safetensor format.
pub fn from_buffered_safetensors(data: Vec<u8>, dtype: DType, dev: &Device) -> Result<Self> {
let tensors = candle::safetensors::BufferedSafetensors::new(data)?;
- Ok(Self::new(Box::new(tensors), dtype, dev.clone()))
+ Ok(Self::from_backend(Box::new(tensors), dtype, dev.clone()))
}
/// Initializes a `VarBuilder` that retrieves tensors stored in a numpy npz file.
pub fn from_npz<P: AsRef<std::path::Path>>(p: P, dtype: DType, dev: &Device) -> Result<Self> {
let npz = candle::npy::NpzTensors::new(p)?;
- Ok(Self::new(Box::new(npz), dtype, dev.clone()))
+ Ok(Self::from_backend(Box::new(npz), dtype, dev.clone()))
}
/// Initializes a `VarBuilder` that retrieves tensors stored in a pytorch pth file.
pub fn from_pth<P: AsRef<std::path::Path>>(p: P, dtype: DType, dev: &Device) -> Result<Self> {
let pth = candle::pickle::PthTensors::new(p)?;
- Ok(Self::new(Box::new(pth), dtype, dev.clone()))
+ Ok(Self::from_backend(Box::new(pth), dtype, dev.clone()))
}
}