diff options
author | Daniƫl de Kok <me@github.danieldk.eu> | 2024-02-06 15:26:11 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-02-06 15:26:11 +0100 |
commit | a90fc5ca5a486e988d39ea69ee3d3bb40a39c017 (patch) | |
tree | e53d0d27b5a5843dd0f9ce040ff6e4a65d6776dc /candle-nn | |
parent | adfae2460ac39a76fb15b1543ebe056c1d7b785f (diff) | |
download | candle-a90fc5ca5a486e988d39ea69ee3d3bb40a39c017.tar.gz candle-a90fc5ca5a486e988d39ea69ee3d3bb40a39c017.tar.bz2 candle-a90fc5ca5a486e988d39ea69ee3d3bb40a39c017.zip |
Add `VarBuilder::from_backend` (#1670)
`candle-nn` already exposes a trait to define custom backends. However,
it's not possible to actually construct a `VarBuilder` with a custom
backend because the constructor is not exposed.
This change makes the constructor public and renames it from `new` to
`from_backend` to avoid that it is seen as the primary
constructor (which could be confusing to users).
Diffstat (limited to 'candle-nn')
-rw-r--r-- | candle-nn/src/var_builder.rs | 25 |
1 files changed, 17 insertions, 8 deletions
diff --git a/candle-nn/src/var_builder.rs b/candle-nn/src/var_builder.rs index 83c86a6f..33d94c83 100644 --- a/candle-nn/src/var_builder.rs +++ b/candle-nn/src/var_builder.rs @@ -412,7 +412,16 @@ impl SimpleBackend for candle::safetensors::BufferedSafetensors { } impl<'a> VarBuilder<'a> { - fn new(backend: Box<dyn SimpleBackend + 'a>, dtype: DType, device: Device) -> Self { + /// Initializes a `VarBuilder` using a custom backend. + /// + /// It is preferred to use one of the more specific constructors. This + /// constructor is provided to allow downstream users to define their own + /// backends. + pub fn from_backend( + backend: Box<dyn SimpleBackend + 'a>, + dtype: DType, + device: Device, + ) -> Self { let data = TensorData { backend, dtype, @@ -427,13 +436,13 @@ impl<'a> VarBuilder<'a> { /// Initializes a `VarBuilder` that uses zeros for any tensor. pub fn zeros(dtype: DType, dev: &Device) -> Self { - Self::new(Box::new(Zeros), dtype, dev.clone()) + Self::from_backend(Box::new(Zeros), dtype, dev.clone()) } /// Initializes a `VarBuilder` that retrieves tensors stored in a hashtable. An error is /// returned if no tensor is available under the requested path or on shape mismatches. pub fn from_tensors(ts: HashMap<String, Tensor>, dtype: DType, dev: &Device) -> Self { - Self::new(Box::new(ts), dtype, dev.clone()) + Self::from_backend(Box::new(ts), dtype, dev.clone()) } /// Initializes a `VarBuilder` using a `VarMap`. The requested tensors are created and @@ -443,7 +452,7 @@ impl<'a> VarBuilder<'a> { /// Note that it is possible to load the tensor values after model creation using the `load` /// method on `varmap`, this can be used to start model training from an existing checkpoint. pub fn from_varmap(varmap: &VarMap, dtype: DType, dev: &Device) -> Self { - Self::new(Box::new(varmap.clone()), dtype, dev.clone()) + Self::from_backend(Box::new(varmap.clone()), dtype, dev.clone()) } /// Initializes a `VarBuilder` that retrieves tensors stored in a collection of safetensors @@ -458,25 +467,25 @@ impl<'a> VarBuilder<'a> { dev: &Device, ) -> Result<Self> { let tensors = candle::safetensors::MmapedSafetensors::multi(paths)?; - Ok(Self::new(Box::new(tensors), dtype, dev.clone())) + Ok(Self::from_backend(Box::new(tensors), dtype, dev.clone())) } /// Initializes a `VarBuilder` from a binary builder in the safetensor format. pub fn from_buffered_safetensors(data: Vec<u8>, dtype: DType, dev: &Device) -> Result<Self> { let tensors = candle::safetensors::BufferedSafetensors::new(data)?; - Ok(Self::new(Box::new(tensors), dtype, dev.clone())) + Ok(Self::from_backend(Box::new(tensors), dtype, dev.clone())) } /// Initializes a `VarBuilder` that retrieves tensors stored in a numpy npz file. pub fn from_npz<P: AsRef<std::path::Path>>(p: P, dtype: DType, dev: &Device) -> Result<Self> { let npz = candle::npy::NpzTensors::new(p)?; - Ok(Self::new(Box::new(npz), dtype, dev.clone())) + Ok(Self::from_backend(Box::new(npz), dtype, dev.clone())) } /// Initializes a `VarBuilder` that retrieves tensors stored in a pytorch pth file. pub fn from_pth<P: AsRef<std::path::Path>>(p: P, dtype: DType, dev: &Device) -> Result<Self> { let pth = candle::pickle::PthTensors::new(p)?; - Ok(Self::new(Box::new(pth), dtype, dev.clone())) + Ok(Self::from_backend(Box::new(pth), dtype, dev.clone())) } } |