summaryrefslogtreecommitdiff
path: root/candle-nn
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-12-03 17:06:09 +0100
committerGitHub <noreply@github.com>2023-12-03 16:06:09 +0000
commitb5c283e86f18aa653e64d8c3894d8691d318bde7 (patch)
tree4569804ba8380518570ba50ca97925b23774c314 /candle-nn
parent8418154ee0cade8b9aebc22750c7717eb273b65d (diff)
downloadcandle-b5c283e86f18aa653e64d8c3894d8691d318bde7.tar.gz
candle-b5c283e86f18aa653e64d8c3894d8691d318bde7.tar.bz2
candle-b5c283e86f18aa653e64d8c3894d8691d318bde7.zip
Add the prelu layer. (#1402)
Diffstat (limited to 'candle-nn')
-rw-r--r--candle-nn/src/activation.rs50
-rw-r--r--candle-nn/src/lib.rs2
-rw-r--r--candle-nn/src/linear.rs3
3 files changed, 51 insertions, 4 deletions
diff --git a/candle-nn/src/activation.rs b/candle-nn/src/activation.rs
index a2650634..8b9a8785 100644
--- a/candle-nn/src/activation.rs
+++ b/candle-nn/src/activation.rs
@@ -1,4 +1,4 @@
-use candle::Tensor;
+use candle::{Result, Tensor};
use serde::Deserialize;
#[derive(Debug, Clone, Copy, PartialEq, Deserialize, Default)]
@@ -21,7 +21,7 @@ pub enum Activation {
}
impl super::Module for Activation {
- fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
match self {
Self::Gelu => xs.gelu_erf(),
// https://github.com/huggingface/transformers/blob/12f043eaeaabfef6f6efea411d98e6f6d3c094b7/src/transformers/activations.py#L49-L78
@@ -40,3 +40,49 @@ impl super::Module for Activation {
}
}
}
+
+#[derive(Clone, Debug)]
+pub struct PReLU {
+ weight: Tensor,
+ is_scalar: bool,
+}
+
+impl PReLU {
+ pub fn new(weight: Tensor, is_scalar: bool) -> Self {
+ Self { weight, is_scalar }
+ }
+
+ pub fn weight(&self) -> &Tensor {
+ &self.weight
+ }
+
+ pub fn is_scalar(&self) -> bool {
+ self.is_scalar
+ }
+}
+
+impl candle::Module for PReLU {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let weight = if self.is_scalar {
+ self.weight.reshape(())?
+ } else {
+ self.weight.clone()
+ };
+ let zeros = xs.zeros_like()?;
+ xs.maximum(&zeros)? + xs.minimum(&zeros)?.broadcast_mul(&weight)?
+ }
+}
+
+/// Create or initialize a new PReLU layer.
+///
+/// This uses some default name for weights, namely `"weight"`.
+/// # Arguments
+///
+/// * `num_parameters` - The number of parameters. Use `None` to have as single trainable value
+/// and `Some` for a 1D vector with the appropriate number of features.
+pub fn prelu(num_parameters: Option<usize>, vs: crate::VarBuilder) -> Result<PReLU> {
+ let init_ws = crate::init::Init::Const(0.25);
+ // When using a scalar weight, the PyTorch encoding is to use a 1d vector of length 1.
+ let ws = vs.get_with_hints((num_parameters.unwrap_or(1),), "weight", init_ws)?;
+ Ok(PReLU::new(ws, num_parameters.is_none()))
+}
diff --git a/candle-nn/src/lib.rs b/candle-nn/src/lib.rs
index 52d8f0c5..8f00e54c 100644
--- a/candle-nn/src/lib.rs
+++ b/candle-nn/src/lib.rs
@@ -15,7 +15,7 @@ pub mod sequential;
pub mod var_builder;
pub mod var_map;
-pub use activation::Activation;
+pub use activation::{prelu, Activation, PReLU};
pub use batch_norm::{batch_norm, BatchNorm, BatchNormConfig};
pub use conv::{
conv1d, conv2d, conv2d_no_bias, conv_transpose2d, conv_transpose2d_no_bias, Conv1d,
diff --git a/candle-nn/src/linear.rs b/candle-nn/src/linear.rs
index 94632296..59a4db8a 100644
--- a/candle-nn/src/linear.rs
+++ b/candle-nn/src/linear.rs
@@ -56,7 +56,7 @@ impl super::Module for Linear {
/// Create or initialize a new linear layer.
///
-/// This uses some default names for weight and biases, namely `"weight"` and `"bias"`.
+/// This uses some default names for weights and biases, namely `"weight"` and `"bias"`.
pub fn linear(in_dim: usize, out_dim: usize, vs: crate::VarBuilder) -> Result<Linear> {
let init_ws = crate::init::DEFAULT_KAIMING_NORMAL;
let ws = vs.get_with_hints((out_dim, in_dim), "weight", init_ws)?;
@@ -69,6 +69,7 @@ pub fn linear(in_dim: usize, out_dim: usize, vs: crate::VarBuilder) -> Result<Li
Ok(Linear::new(ws, Some(bs)))
}
+/// Create or initialize a new linear layer without biases.
pub fn linear_no_bias(in_dim: usize, out_dim: usize, vs: crate::VarBuilder) -> Result<Linear> {
let init_ws = crate::init::DEFAULT_KAIMING_NORMAL;
let ws = vs.get_with_hints((out_dim, in_dim), "weight", init_ws)?;