summaryrefslogtreecommitdiff
path: root/candle-pyo3
diff options
context:
space:
mode:
authorLukas Kreussel <65088241+LLukas22@users.noreply.github.com>2023-11-08 06:37:50 +0100
committerGitHub <noreply@github.com>2023-11-08 06:37:50 +0100
commitf3a4f3db768d46defc16de48208107db1b32159d (patch)
tree21ae0872e46621656559ec0caf6d7625e6ca7e76 /candle-pyo3
parent7920b45c8ac737b67e23f04297f6bd7e4860f373 (diff)
downloadcandle-f3a4f3db768d46defc16de48208107db1b32159d.tar.gz
candle-f3a4f3db768d46defc16de48208107db1b32159d.tar.bz2
candle-f3a4f3db768d46defc16de48208107db1b32159d.zip
PyO3: Add optional `candle.onnx` module (#1282)
* Start onnx integration * Merge remote-tracking branch 'upstream/main' into feat/pyo3-onnx * Implement ONNXModel * `fmt` * add `onnx` flag to python ci * Pin `protoc` to `25.0` * Setup `protoc` in wheel builds * Build wheels with `onnx` * Install `protoc` in manylinux containers * `apt` -> `yum` * Download `protoc` via bash script * Back to `manylinux: auto` * Disable `onnx` builds for linux
Diffstat (limited to 'candle-pyo3')
-rw-r--r--candle-pyo3/Cargo.toml3
-rw-r--r--candle-pyo3/py_src/candle/onnx/__init__.py5
-rw-r--r--candle-pyo3/py_src/candle/onnx/__init__.pyi89
-rw-r--r--candle-pyo3/src/lib.rs22
-rw-r--r--candle-pyo3/src/onnx.rs212
-rw-r--r--candle-pyo3/src/utils.rs6
6 files changed, 334 insertions, 3 deletions
diff --git a/candle-pyo3/Cargo.toml b/candle-pyo3/Cargo.toml
index b0452404..f79277f2 100644
--- a/candle-pyo3/Cargo.toml
+++ b/candle-pyo3/Cargo.toml
@@ -17,6 +17,7 @@ crate-type = ["cdylib"]
accelerate-src = { workspace = true, optional = true }
candle = { path = "../candle-core", version = "0.3.0", package = "candle-core" }
candle-nn = { path = "../candle-nn", version = "0.3.0" }
+candle-onnx = {path= "../candle-onnx", version = "0.3.0", optional = true}
half = { workspace = true }
intel-mkl-src = { workspace = true, optional = true }
pyo3 = { version = "0.20.0", features = ["extension-module", "abi3-py38"] }
@@ -29,3 +30,5 @@ default = []
accelerate = ["dep:accelerate-src", "candle/accelerate"]
cuda = ["candle/cuda"]
mkl = ["dep:intel-mkl-src","candle/mkl"]
+onnx = ["dep:candle-onnx"]
+
diff --git a/candle-pyo3/py_src/candle/onnx/__init__.py b/candle-pyo3/py_src/candle/onnx/__init__.py
new file mode 100644
index 00000000..856ecd7d
--- /dev/null
+++ b/candle-pyo3/py_src/candle/onnx/__init__.py
@@ -0,0 +1,5 @@
+# Generated content DO NOT EDIT
+from .. import onnx
+
+ONNXModel = onnx.ONNXModel
+ONNXTensorDescription = onnx.ONNXTensorDescription
diff --git a/candle-pyo3/py_src/candle/onnx/__init__.pyi b/candle-pyo3/py_src/candle/onnx/__init__.pyi
new file mode 100644
index 00000000..8ce1b3aa
--- /dev/null
+++ b/candle-pyo3/py_src/candle/onnx/__init__.pyi
@@ -0,0 +1,89 @@
+# Generated content DO NOT EDIT
+from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Sequence
+from os import PathLike
+from candle.typing import _ArrayLike, Device, Scalar, Index, Shape
+from candle import Tensor, DType, QTensor
+
+class ONNXModel:
+ """
+ A wrapper around an ONNX model.
+ """
+
+ def __init__(self, path: str):
+ pass
+ @property
+ def doc_string(self) -> str:
+ """
+ The doc string of the model.
+ """
+ pass
+ @property
+ def domain(self) -> str:
+ """
+ The domain of the operator set of the model.
+ """
+ pass
+ def initializers(self) -> Dict[str, Tensor]:
+ """
+ Get the weights of the model.
+ """
+ pass
+ @property
+ def inputs(self) -> Optional[Dict[str, ONNXTensorDescription]]:
+ """
+ The inputs of the model.
+ """
+ pass
+ @property
+ def ir_version(self) -> int:
+ """
+ The version of the IR this model targets.
+ """
+ pass
+ @property
+ def model_version(self) -> int:
+ """
+ The version of the model.
+ """
+ pass
+ @property
+ def outputs(self) -> Optional[Dict[str, ONNXTensorDescription]]:
+ """
+ The outputs of the model.
+ """
+ pass
+ @property
+ def producer_name(self) -> str:
+ """
+ The producer of the model.
+ """
+ pass
+ @property
+ def producer_version(self) -> str:
+ """
+ The version of the producer of the model.
+ """
+ pass
+ def run(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]:
+ """
+ Run the model on the given inputs.
+ """
+ pass
+
+class ONNXTensorDescription:
+ """
+ A wrapper around an ONNX tensor description.
+ """
+
+ @property
+ def dtype(self) -> DType:
+ """
+ The data type of the tensor.
+ """
+ pass
+ @property
+ def shape(self) -> Tuple[Union[int, str, Any]]:
+ """
+ The shape of the tensor.
+ """
+ pass
diff --git a/candle-pyo3/src/lib.rs b/candle-pyo3/src/lib.rs
index ddd58fbe..05a786ef 100644
--- a/candle-pyo3/src/lib.rs
+++ b/candle-pyo3/src/lib.rs
@@ -19,12 +19,14 @@ extern crate accelerate_src;
use ::candle::{quantized::QTensor, DType, Device, Tensor, WithDType};
+mod utils;
+use utils::wrap_err;
+
mod shape;
use shape::{PyShape, PyShapeWithHole};
-pub fn wrap_err(err: ::candle::Error) -> PyErr {
- PyErr::new::<PyValueError, _>(format!("{err:?}"))
-}
+#[cfg(feature = "onnx")]
+mod onnx;
#[derive(Clone, Debug)]
#[pyclass(name = "Tensor")]
@@ -1559,6 +1561,14 @@ fn candle_functional_m(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
Ok(())
}
+#[cfg(feature = "onnx")]
+fn candle_onnx_m(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
+ use onnx::{PyONNXModel, PyONNXTensorDescriptor};
+ m.add_class::<PyONNXModel>()?;
+ m.add_class::<PyONNXTensorDescriptor>()?;
+ Ok(())
+}
+
#[pymodule]
fn candle(py: Python<'_>, m: &PyModule) -> PyResult<()> {
let utils = PyModule::new(py, "utils")?;
@@ -1567,6 +1577,12 @@ fn candle(py: Python<'_>, m: &PyModule) -> PyResult<()> {
let nn = PyModule::new(py, "functional")?;
candle_functional_m(py, nn)?;
m.add_submodule(nn)?;
+ #[cfg(feature = "onnx")]
+ {
+ let onnx = PyModule::new(py, "onnx")?;
+ candle_onnx_m(py, onnx)?;
+ m.add_submodule(onnx)?;
+ }
m.add_class::<PyTensor>()?;
m.add_class::<PyQTensor>()?;
m.add_class::<PyDType>()?;
diff --git a/candle-pyo3/src/onnx.rs b/candle-pyo3/src/onnx.rs
new file mode 100644
index 00000000..b9a0eb22
--- /dev/null
+++ b/candle-pyo3/src/onnx.rs
@@ -0,0 +1,212 @@
+use std::collections::HashMap;
+
+use crate::utils::wrap_err;
+use crate::{PyDType, PyTensor};
+use candle_onnx::eval::{dtype, get_tensor, simple_eval};
+use candle_onnx::onnx::tensor_proto::DataType;
+use candle_onnx::onnx::tensor_shape_proto::dimension::Value;
+use candle_onnx::onnx::type_proto::{Tensor as ONNXTensor, Value as ONNXValue};
+use candle_onnx::onnx::{ModelProto, ValueInfoProto};
+use pyo3::exceptions::PyValueError;
+use pyo3::prelude::*;
+use pyo3::types::{PyList, PyTuple};
+
+#[derive(Clone, Debug)]
+#[pyclass(name = "ONNXTensorDescription")]
+/// A wrapper around an ONNX tensor description.
+pub struct PyONNXTensorDescriptor(ONNXTensor);
+
+#[pymethods]
+impl PyONNXTensorDescriptor {
+ #[getter]
+ /// The data type of the tensor.
+ /// &RETURNS&: DType
+ fn dtype(&self) -> PyResult<PyDType> {
+ match DataType::try_from(self.0.elem_type) {
+ Ok(dt) => match dtype(dt) {
+ Some(dt) => Ok(PyDType(dt)),
+ None => Err(PyValueError::new_err(format!(
+ "unsupported 'value' data-type {dt:?}"
+ ))),
+ },
+ type_ => Err(PyValueError::new_err(format!(
+ "unsupported input type {type_:?}"
+ ))),
+ }
+ }
+
+ #[getter]
+ /// The shape of the tensor.
+ /// &RETURNS&: Tuple[Union[int,str,Any]]
+ fn shape(&self, py: Python) -> PyResult<Py<PyTuple>> {
+ let shape = PyList::empty(py);
+ if let Some(d) = &self.0.shape {
+ for dim in d.dim.iter() {
+ if let Some(value) = &dim.value {
+ match value {
+ Value::DimValue(v) => shape.append(*v)?,
+ Value::DimParam(s) => shape.append(s.clone())?,
+ };
+ } else {
+ return Err(PyValueError::new_err("None value in shape"));
+ }
+ }
+ }
+ Ok(shape.to_tuple().into())
+ }
+
+ fn __repr__(&self, py: Python) -> String {
+ match (self.shape(py), self.dtype()) {
+ (Ok(shape), Ok(dtype)) => format!(
+ "TensorDescriptor[shape: {:?}, dtype: {:?}]",
+ shape.to_string(),
+ dtype.__str__()
+ ),
+ (Err(_), Err(_)) => "TensorDescriptor[shape: unknown, dtype: unknown]".to_string(),
+ (Err(_), Ok(dtype)) => format!(
+ "TensorDescriptor[shape: unknown, dtype: {:?}]",
+ dtype.__str__()
+ ),
+ (Ok(shape), Err(_)) => format!(
+ "TensorDescriptor[shape: {:?}, dtype: unknown]",
+ shape.to_string()
+ ),
+ }
+ }
+
+ fn __str__(&self, py: Python) -> String {
+ self.__repr__(py)
+ }
+}
+
+#[derive(Clone, Debug)]
+#[pyclass(name = "ONNXModel")]
+/// A wrapper around an ONNX model.
+pub struct PyONNXModel(ModelProto);
+
+fn extract_tensor_descriptions(
+ value_infos: &[ValueInfoProto],
+) -> HashMap<String, PyONNXTensorDescriptor> {
+ let mut map = HashMap::new();
+ for value_info in value_infos.iter() {
+ let input_type = match &value_info.r#type {
+ Some(input_type) => input_type,
+ None => continue,
+ };
+ let input_type = match &input_type.value {
+ Some(input_type) => input_type,
+ None => continue,
+ };
+
+ let tensor_type: &ONNXTensor = match input_type {
+ ONNXValue::TensorType(tt) => tt,
+ _ => continue,
+ };
+ map.insert(
+ value_info.name.to_string(),
+ PyONNXTensorDescriptor(tensor_type.clone()),
+ );
+ }
+ map
+}
+
+#[pymethods]
+impl PyONNXModel {
+ #[new]
+ #[pyo3(text_signature = "(self, path:str)")]
+ /// Load an ONNX model from the given path.
+ fn new(path: String) -> PyResult<Self> {
+ let model: ModelProto = candle_onnx::read_file(path).map_err(wrap_err)?;
+ Ok(PyONNXModel(model))
+ }
+
+ #[getter]
+ /// The version of the IR this model targets.
+ /// &RETURNS&: int
+ fn ir_version(&self) -> i64 {
+ self.0.ir_version
+ }
+
+ #[getter]
+ /// The producer of the model.
+ /// &RETURNS&: str
+ fn producer_name(&self) -> String {
+ self.0.producer_name.clone()
+ }
+
+ #[getter]
+ /// The version of the producer of the model.
+ /// &RETURNS&: str
+ fn producer_version(&self) -> String {
+ self.0.producer_version.clone()
+ }
+
+ #[getter]
+ /// The domain of the operator set of the model.
+ /// &RETURNS&: str
+ fn domain(&self) -> String {
+ self.0.domain.clone()
+ }
+
+ #[getter]
+ /// The version of the model.
+ /// &RETURNS&: int
+ fn model_version(&self) -> i64 {
+ self.0.model_version
+ }
+
+ #[getter]
+ /// The doc string of the model.
+ /// &RETURNS&: str
+ fn doc_string(&self) -> String {
+ self.0.doc_string.clone()
+ }
+
+ /// Get the weights of the model.
+ /// &RETURNS&: Dict[str, Tensor]
+ fn initializers(&self) -> PyResult<HashMap<String, PyTensor>> {
+ let mut map = HashMap::new();
+ if let Some(graph) = self.0.graph.as_ref() {
+ for tensor_description in graph.initializer.iter() {
+ let tensor = get_tensor(tensor_description, tensor_description.name.as_str())
+ .map_err(wrap_err)?;
+ map.insert(tensor_description.name.to_string(), PyTensor(tensor));
+ }
+ }
+ Ok(map)
+ }
+
+ #[getter]
+ /// The inputs of the model.
+ /// &RETURNS&: Optional[Dict[str, ONNXTensorDescription]]
+ fn inputs(&self) -> Option<HashMap<String, PyONNXTensorDescriptor>> {
+ if let Some(graph) = self.0.graph.as_ref() {
+ return Some(extract_tensor_descriptions(&graph.input));
+ }
+ None
+ }
+
+ #[getter]
+ /// The outputs of the model.
+ /// &RETURNS&: Optional[Dict[str, ONNXTensorDescription]]
+ fn outputs(&self) -> Option<HashMap<String, PyONNXTensorDescriptor>> {
+ if let Some(graph) = self.0.graph.as_ref() {
+ return Some(extract_tensor_descriptions(&graph.output));
+ }
+ None
+ }
+
+ #[pyo3(text_signature = "(self, inputs:Dict[str,Tensor])")]
+ /// Run the model on the given inputs.
+ /// &RETURNS&: Dict[str,Tensor]
+ fn run(&self, inputs: HashMap<String, PyTensor>) -> PyResult<HashMap<String, PyTensor>> {
+ let unwrapped_tensors = inputs.into_iter().map(|(k, v)| (k.clone(), v.0)).collect();
+
+ let result = simple_eval(&self.0, unwrapped_tensors).map_err(wrap_err)?;
+
+ Ok(result
+ .into_iter()
+ .map(|(k, v)| (k.clone(), PyTensor(v)))
+ .collect())
+ }
+}
diff --git a/candle-pyo3/src/utils.rs b/candle-pyo3/src/utils.rs
new file mode 100644
index 00000000..ad0a76a5
--- /dev/null
+++ b/candle-pyo3/src/utils.rs
@@ -0,0 +1,6 @@
+use pyo3::exceptions::PyValueError;
+use pyo3::prelude::*;
+
+pub fn wrap_err(err: ::candle::Error) -> PyErr {
+ PyErr::new::<PyValueError, _>(format!("{err:?}"))
+}