summaryrefslogtreecommitdiff
path: root/candle-transformers/src/models/beit.rs
diff options
context:
space:
mode:
authorv-espitalier <125037408+v-espitalier@users.noreply.github.com>2024-07-01 22:11:48 +0200
committerGitHub <noreply@github.com>2024-07-01 22:11:48 +0200
commit7f1ba8038c9a8a1778f6d3af55775c7d66317b48 (patch)
tree68cde68e351a205b548e82faef37cb3fa98427d9 /candle-transformers/src/models/beit.rs
parent74e9e4191167c162f61a9e8334cfe2445dd41d83 (diff)
downloadcandle-7f1ba8038c9a8a1778f6d3af55775c7d66317b48.tar.gz
candle-7f1ba8038c9a8a1778f6d3af55775c7d66317b48.tar.bz2
candle-7f1ba8038c9a8a1778f6d3af55775c7d66317b48.zip
Add Beit model ( https://arxiv.org/abs/2106.08254 ) (#2305)
Co-authored-by: v-espitalier <>
Diffstat (limited to 'candle-transformers/src/models/beit.rs')
-rw-r--r--candle-transformers/src/models/beit.rs367
1 files changed, 367 insertions, 0 deletions
diff --git a/candle-transformers/src/models/beit.rs b/candle-transformers/src/models/beit.rs
new file mode 100644
index 00000000..c534032c
--- /dev/null
+++ b/candle-transformers/src/models/beit.rs
@@ -0,0 +1,367 @@
+use candle::{DType, IndexOp, Result, Tensor, D};
+use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
+
+const IMG_SIZE: usize = 384;
+const PATCH_SIZE: usize = 16;
+const NUM_CLASSES: usize = 1000;
+const WINDOW_SIZE: usize = IMG_SIZE / PATCH_SIZE; // 384 / 16 = 24
+const NB_TOKENS: usize = WINDOW_SIZE * WINDOW_SIZE + 1; // 24 * 24 + 1 = 577
+
+fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> {
+ if bias {
+ candle_nn::linear(in_dim, out_dim, vb)
+ } else {
+ candle_nn::linear_no_bias(in_dim, out_dim, vb)
+ }
+}
+
+#[derive(Debug)]
+struct Attention {
+ qkv: Linear,
+ proj: Linear,
+ relative_position_bias_table: Tensor,
+ relative_position_index: Tensor,
+ num_heads: usize,
+ scale: f64,
+}
+
+impl Attention {
+ fn new(
+ vb: VarBuilder,
+ dim: usize,
+ num_heads: usize,
+ qkv_bias: bool,
+ proj_bias: bool,
+ relative_position_index: &Tensor,
+ ) -> Result<Self> {
+ let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?;
+ let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?;
+ // num_relative_distance = token-token(47x47) + token-CLS(1) + CLS-token(1) + CLS-CLS(1) = 2212
+ let num_relative_distance = (2 * WINDOW_SIZE - 1) * (2 * WINDOW_SIZE - 1) + 3;
+ let relative_position_bias_table = vb.get(
+ (num_relative_distance, num_heads),
+ "relative_position_bias_table",
+ )?;
+ let relative_position_index = relative_position_index.clone();
+ let scale = 1. / ((dim / num_heads) as f64).sqrt();
+ Ok(Self {
+ qkv,
+ proj,
+ relative_position_bias_table,
+ relative_position_index,
+ num_heads,
+ scale,
+ })
+ }
+}
+
+impl Attention {
+ fn _get_rel_pos_bias(&self) -> Result<Tensor> {
+ self.relative_position_bias_table
+ .index_select(
+ &self
+ .relative_position_index
+ .flatten_all()?
+ .to_dtype(DType::U32)?,
+ 0,
+ )?
+ .reshape((NB_TOKENS, NB_TOKENS, ()))?
+ .transpose(0, 1)? // 102
+ .transpose(0, 2)? // 201
+ .contiguous()?
+ .unsqueeze(0)
+ }
+}
+
+impl Module for Attention {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let (b, n, c) = xs.dims3()?;
+ let qkv = self
+ .qkv
+ .forward(xs)?
+ .reshape((b, n, 3, self.num_heads, c / self.num_heads))?
+ .transpose(1, 2)? // 02134
+ .transpose(0, 1)? // 20134
+ .transpose(2, 3)?; // 20314
+ let q = (qkv.i(0)? * self.scale)?;
+ let k = qkv.i(1)?.contiguous()?;
+ let v = qkv.i(2)?.contiguous()?;
+ let attn = (&q.matmul(&k.t()?)? + self._get_rel_pos_bias())?;
+ let attn = candle_nn::ops::softmax(&attn, D::Minus1)?;
+ let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?;
+ self.proj.forward(&attn)
+ }
+}
+
+#[derive(Debug)]
+struct LayerScale {
+ gamma: Tensor,
+}
+
+impl LayerScale {
+ fn new(vb: VarBuilder, dim: usize) -> Result<Self> {
+ let gamma = vb.get(dim, "gamma")?;
+ Ok(Self { gamma })
+ }
+}
+
+impl Module for LayerScale {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ xs.broadcast_mul(&self.gamma)
+ }
+}
+
+#[derive(Debug)]
+struct Mlp {
+ fc1: Linear,
+ fc2: Linear,
+}
+
+impl Mlp {
+ fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> {
+ let out_features = in_features;
+ let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?;
+ let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?;
+ Ok(Self { fc1, fc2 })
+ }
+}
+
+impl Module for Mlp {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let xs = self.fc1.forward(xs)?.gelu()?;
+ self.fc2.forward(&xs)
+ }
+}
+
+#[derive(Debug)]
+struct Block {
+ norm1: LayerNorm,
+ attn: Attention,
+ ls1: LayerScale,
+ norm2: LayerNorm,
+ mlp: Mlp,
+ ls2: LayerScale,
+}
+
+impl Block {
+ fn new(
+ vb: VarBuilder,
+ dim: usize,
+ num_heads: usize,
+ relative_position_index: &Tensor,
+ ) -> Result<Self> {
+ let norm1 = layer_norm(dim, 1e-6, vb.pp("norm1"))?;
+ let attn = Attention::new(
+ vb.pp("attn"),
+ dim,
+ num_heads,
+ true,
+ true,
+ relative_position_index,
+ )?;
+ let ls1 = LayerScale::new(vb.pp("ls1"), dim)?;
+ let norm2 = layer_norm(dim, 1e-6, vb.pp("norm2"))?;
+ let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?;
+ let ls2 = LayerScale::new(vb.pp("ls2"), dim)?;
+ Ok(Self {
+ norm1,
+ attn,
+ ls1,
+ norm2,
+ mlp,
+ ls2,
+ })
+ }
+}
+
+impl Module for Block {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let residual = xs;
+ let xs = self
+ .ls1
+ .forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?;
+ let xs = (xs + residual)?;
+ let residual = &xs;
+ let xs = self
+ .ls2
+ .forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?;
+ xs + residual
+ }
+}
+
+#[derive(Debug)]
+struct PatchEmbed {
+ proj: candle_nn::Conv2d,
+ patch_size: (usize, usize),
+}
+
+impl PatchEmbed {
+ fn new(vb: VarBuilder, patch_size: usize, in_chans: usize, embed_dim: usize) -> Result<Self> {
+ let config = candle_nn::Conv2dConfig {
+ stride: patch_size,
+ ..Default::default()
+ };
+ let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?;
+ Ok(Self {
+ proj,
+ patch_size: (patch_size, patch_size),
+ })
+ }
+}
+
+impl Module for PatchEmbed {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let (_b, _c, h, w) = xs.dims4()?;
+ let (patch_h, patch_w) = self.patch_size;
+ if (h % patch_h) != 0 {
+ candle::bail!("image height {h} is not a multiple of patch height {patch_h}")
+ }
+ if (w % patch_w) != 0 {
+ candle::bail!("image width {w} is not a multiple of patch width {patch_w}")
+ }
+ let xs = self.proj.forward(xs)?;
+ let (b, c, h, w) = xs.dims4()?;
+ // flatten embeddings.
+ xs.reshape((b, c, h * w))?.transpose(1, 2)
+ }
+}
+
+#[derive(Debug)]
+pub struct BeitVisionTransformer {
+ patch_embed: PatchEmbed,
+ cls_token: Tensor,
+ blocks: Vec<Block>,
+ norm: LayerNorm,
+ head: Linear,
+}
+
+impl BeitVisionTransformer {
+ pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> {
+ let patch_embed = PatchEmbed::new(vb.pp("patch_embed"), PATCH_SIZE, 3, embed_dim)?;
+ let cls_token = vb.get((1, 1, embed_dim), "cls_token")?;
+ let head = linear(vb.pp("head"), embed_dim, NUM_CLASSES, true)?;
+ let relative_position_index = vb.get((NB_TOKENS, NB_TOKENS), "relative_position_index")?;
+ let norm = layer_norm(embed_dim, 1e-6, vb.pp("norm"))?;
+ let vb_b = vb.pp("blocks");
+ let blocks = (0..depth)
+ .map(|i| {
+ Block::new(
+ vb_b.pp(&i.to_string()),
+ embed_dim,
+ num_heads,
+ &relative_position_index,
+ )
+ })
+ .collect::<Result<Vec<_>>>()?;
+ Ok(Self {
+ patch_embed,
+ cls_token,
+ blocks,
+ norm,
+ head,
+ })
+ }
+
+ fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> {
+ let xs = self.patch_embed.forward(xs)?;
+ Tensor::cat(&[&self.cls_token, &xs], 1)
+ }
+
+ fn get_intermediate_layers_not_chunked(
+ &self,
+ xs: &Tensor,
+ blocks_to_take: &[usize],
+ ) -> Result<Vec<Tensor>> {
+ let mut xs = self.prepare_tokens_with_mask(xs)?;
+ let mut output = Vec::new();
+ for (i, blk) in self.blocks.iter().enumerate() {
+ xs = blk.forward(&xs)?;
+ if blocks_to_take.contains(&i) {
+ output.push(xs.clone());
+ }
+ }
+ if output.len() != blocks_to_take.len() {
+ candle::bail!(
+ "only {} / {} blocks found",
+ output.len(),
+ blocks_to_take.len()
+ );
+ }
+ Ok(output)
+ }
+
+ pub fn get_intermediate_layers(
+ &self,
+ xs: &Tensor,
+ blocks_to_take: &[usize],
+ reshape: bool,
+ return_class_token: bool,
+ norm: bool,
+ ) -> Result<Tensor> {
+ let outputs = self.get_intermediate_layers_not_chunked(xs, blocks_to_take)?;
+ let outputs = if norm {
+ outputs
+ .iter()
+ .map(|out| self.norm.forward(out))
+ .collect::<Result<Vec<_>>>()?
+ } else {
+ outputs
+ };
+ let class_tokens = outputs
+ .iter()
+ .map(|out| out.i((.., 0)))
+ .collect::<Result<Vec<_>>>()?;
+ let outputs = outputs
+ .iter()
+ .map(|out| out.i((.., 1..)))
+ .collect::<Result<Vec<_>>>()?;
+
+ let outputs = if reshape {
+ let (b, _c, w, h) = xs.dims4()?;
+ let patch_size = self.patch_embed.patch_size.0;
+ let num_channels = outputs[0].elem_count() / (b * (w / patch_size) * (h / patch_size));
+ outputs
+ .iter()
+ .map(|out| {
+ out.reshape((b, w / patch_size, h / patch_size, num_channels))?
+ .transpose(2, 3)?
+ .transpose(1, 2)
+ })
+ .collect::<Result<Vec<_>>>()?
+ } else {
+ outputs
+ };
+
+ let outputs = if return_class_token {
+ outputs
+ .iter()
+ .zip(class_tokens.iter())
+ .map(|(out, class_token)| Tensor::cat(&[out, class_token], D::Minus1))
+ .collect::<Result<Vec<_>>>()?
+ } else {
+ outputs
+ };
+
+ Tensor::stack(&outputs[..], 0)
+ }
+}
+
+impl Module for BeitVisionTransformer {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let mut xs = self.prepare_tokens_with_mask(xs)?;
+ for blk in self.blocks.iter() {
+ xs = blk.forward(&xs)?
+ }
+ let xs_moy_local_tokens = xs.i((.., 1..))?.mean(1)?;
+ let xs_norm = self.norm.forward(&xs_moy_local_tokens)?;
+ self.head.forward(&xs_norm)
+ }
+}
+
+pub fn vit_base(vb: VarBuilder) -> Result<BeitVisionTransformer> {
+ BeitVisionTransformer::new(vb, 12, 768, 12)
+}
+
+pub fn vit_large(vb: VarBuilder) -> Result<BeitVisionTransformer> {
+ BeitVisionTransformer::new(vb, 24, 1024, 16)
+}