diff options
author | v-espitalier <125037408+v-espitalier@users.noreply.github.com> | 2024-07-01 22:11:48 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-01 22:11:48 +0200 |
commit | 7f1ba8038c9a8a1778f6d3af55775c7d66317b48 (patch) | |
tree | 68cde68e351a205b548e82faef37cb3fa98427d9 /candle-transformers/src/models/beit.rs | |
parent | 74e9e4191167c162f61a9e8334cfe2445dd41d83 (diff) | |
download | candle-7f1ba8038c9a8a1778f6d3af55775c7d66317b48.tar.gz candle-7f1ba8038c9a8a1778f6d3af55775c7d66317b48.tar.bz2 candle-7f1ba8038c9a8a1778f6d3af55775c7d66317b48.zip |
Add Beit model ( https://arxiv.org/abs/2106.08254 ) (#2305)
Co-authored-by: v-espitalier <>
Diffstat (limited to 'candle-transformers/src/models/beit.rs')
-rw-r--r-- | candle-transformers/src/models/beit.rs | 367 |
1 files changed, 367 insertions, 0 deletions
diff --git a/candle-transformers/src/models/beit.rs b/candle-transformers/src/models/beit.rs new file mode 100644 index 00000000..c534032c --- /dev/null +++ b/candle-transformers/src/models/beit.rs @@ -0,0 +1,367 @@ +use candle::{DType, IndexOp, Result, Tensor, D}; +use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder}; + +const IMG_SIZE: usize = 384; +const PATCH_SIZE: usize = 16; +const NUM_CLASSES: usize = 1000; +const WINDOW_SIZE: usize = IMG_SIZE / PATCH_SIZE; // 384 / 16 = 24 +const NB_TOKENS: usize = WINDOW_SIZE * WINDOW_SIZE + 1; // 24 * 24 + 1 = 577 + +fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> { + if bias { + candle_nn::linear(in_dim, out_dim, vb) + } else { + candle_nn::linear_no_bias(in_dim, out_dim, vb) + } +} + +#[derive(Debug)] +struct Attention { + qkv: Linear, + proj: Linear, + relative_position_bias_table: Tensor, + relative_position_index: Tensor, + num_heads: usize, + scale: f64, +} + +impl Attention { + fn new( + vb: VarBuilder, + dim: usize, + num_heads: usize, + qkv_bias: bool, + proj_bias: bool, + relative_position_index: &Tensor, + ) -> Result<Self> { + let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?; + let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?; + // num_relative_distance = token-token(47x47) + token-CLS(1) + CLS-token(1) + CLS-CLS(1) = 2212 + let num_relative_distance = (2 * WINDOW_SIZE - 1) * (2 * WINDOW_SIZE - 1) + 3; + let relative_position_bias_table = vb.get( + (num_relative_distance, num_heads), + "relative_position_bias_table", + )?; + let relative_position_index = relative_position_index.clone(); + let scale = 1. / ((dim / num_heads) as f64).sqrt(); + Ok(Self { + qkv, + proj, + relative_position_bias_table, + relative_position_index, + num_heads, + scale, + }) + } +} + +impl Attention { + fn _get_rel_pos_bias(&self) -> Result<Tensor> { + self.relative_position_bias_table + .index_select( + &self + .relative_position_index + .flatten_all()? + .to_dtype(DType::U32)?, + 0, + )? + .reshape((NB_TOKENS, NB_TOKENS, ()))? + .transpose(0, 1)? // 102 + .transpose(0, 2)? // 201 + .contiguous()? + .unsqueeze(0) + } +} + +impl Module for Attention { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let (b, n, c) = xs.dims3()?; + let qkv = self + .qkv + .forward(xs)? + .reshape((b, n, 3, self.num_heads, c / self.num_heads))? + .transpose(1, 2)? // 02134 + .transpose(0, 1)? // 20134 + .transpose(2, 3)?; // 20314 + let q = (qkv.i(0)? * self.scale)?; + let k = qkv.i(1)?.contiguous()?; + let v = qkv.i(2)?.contiguous()?; + let attn = (&q.matmul(&k.t()?)? + self._get_rel_pos_bias())?; + let attn = candle_nn::ops::softmax(&attn, D::Minus1)?; + let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?; + self.proj.forward(&attn) + } +} + +#[derive(Debug)] +struct LayerScale { + gamma: Tensor, +} + +impl LayerScale { + fn new(vb: VarBuilder, dim: usize) -> Result<Self> { + let gamma = vb.get(dim, "gamma")?; + Ok(Self { gamma }) + } +} + +impl Module for LayerScale { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + xs.broadcast_mul(&self.gamma) + } +} + +#[derive(Debug)] +struct Mlp { + fc1: Linear, + fc2: Linear, +} + +impl Mlp { + fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> { + let out_features = in_features; + let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?; + let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?; + Ok(Self { fc1, fc2 }) + } +} + +impl Module for Mlp { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let xs = self.fc1.forward(xs)?.gelu()?; + self.fc2.forward(&xs) + } +} + +#[derive(Debug)] +struct Block { + norm1: LayerNorm, + attn: Attention, + ls1: LayerScale, + norm2: LayerNorm, + mlp: Mlp, + ls2: LayerScale, +} + +impl Block { + fn new( + vb: VarBuilder, + dim: usize, + num_heads: usize, + relative_position_index: &Tensor, + ) -> Result<Self> { + let norm1 = layer_norm(dim, 1e-6, vb.pp("norm1"))?; + let attn = Attention::new( + vb.pp("attn"), + dim, + num_heads, + true, + true, + relative_position_index, + )?; + let ls1 = LayerScale::new(vb.pp("ls1"), dim)?; + let norm2 = layer_norm(dim, 1e-6, vb.pp("norm2"))?; + let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?; + let ls2 = LayerScale::new(vb.pp("ls2"), dim)?; + Ok(Self { + norm1, + attn, + ls1, + norm2, + mlp, + ls2, + }) + } +} + +impl Module for Block { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let residual = xs; + let xs = self + .ls1 + .forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?; + let xs = (xs + residual)?; + let residual = &xs; + let xs = self + .ls2 + .forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?; + xs + residual + } +} + +#[derive(Debug)] +struct PatchEmbed { + proj: candle_nn::Conv2d, + patch_size: (usize, usize), +} + +impl PatchEmbed { + fn new(vb: VarBuilder, patch_size: usize, in_chans: usize, embed_dim: usize) -> Result<Self> { + let config = candle_nn::Conv2dConfig { + stride: patch_size, + ..Default::default() + }; + let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?; + Ok(Self { + proj, + patch_size: (patch_size, patch_size), + }) + } +} + +impl Module for PatchEmbed { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let (_b, _c, h, w) = xs.dims4()?; + let (patch_h, patch_w) = self.patch_size; + if (h % patch_h) != 0 { + candle::bail!("image height {h} is not a multiple of patch height {patch_h}") + } + if (w % patch_w) != 0 { + candle::bail!("image width {w} is not a multiple of patch width {patch_w}") + } + let xs = self.proj.forward(xs)?; + let (b, c, h, w) = xs.dims4()?; + // flatten embeddings. + xs.reshape((b, c, h * w))?.transpose(1, 2) + } +} + +#[derive(Debug)] +pub struct BeitVisionTransformer { + patch_embed: PatchEmbed, + cls_token: Tensor, + blocks: Vec<Block>, + norm: LayerNorm, + head: Linear, +} + +impl BeitVisionTransformer { + pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> { + let patch_embed = PatchEmbed::new(vb.pp("patch_embed"), PATCH_SIZE, 3, embed_dim)?; + let cls_token = vb.get((1, 1, embed_dim), "cls_token")?; + let head = linear(vb.pp("head"), embed_dim, NUM_CLASSES, true)?; + let relative_position_index = vb.get((NB_TOKENS, NB_TOKENS), "relative_position_index")?; + let norm = layer_norm(embed_dim, 1e-6, vb.pp("norm"))?; + let vb_b = vb.pp("blocks"); + let blocks = (0..depth) + .map(|i| { + Block::new( + vb_b.pp(&i.to_string()), + embed_dim, + num_heads, + &relative_position_index, + ) + }) + .collect::<Result<Vec<_>>>()?; + Ok(Self { + patch_embed, + cls_token, + blocks, + norm, + head, + }) + } + + fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> { + let xs = self.patch_embed.forward(xs)?; + Tensor::cat(&[&self.cls_token, &xs], 1) + } + + fn get_intermediate_layers_not_chunked( + &self, + xs: &Tensor, + blocks_to_take: &[usize], + ) -> Result<Vec<Tensor>> { + let mut xs = self.prepare_tokens_with_mask(xs)?; + let mut output = Vec::new(); + for (i, blk) in self.blocks.iter().enumerate() { + xs = blk.forward(&xs)?; + if blocks_to_take.contains(&i) { + output.push(xs.clone()); + } + } + if output.len() != blocks_to_take.len() { + candle::bail!( + "only {} / {} blocks found", + output.len(), + blocks_to_take.len() + ); + } + Ok(output) + } + + pub fn get_intermediate_layers( + &self, + xs: &Tensor, + blocks_to_take: &[usize], + reshape: bool, + return_class_token: bool, + norm: bool, + ) -> Result<Tensor> { + let outputs = self.get_intermediate_layers_not_chunked(xs, blocks_to_take)?; + let outputs = if norm { + outputs + .iter() + .map(|out| self.norm.forward(out)) + .collect::<Result<Vec<_>>>()? + } else { + outputs + }; + let class_tokens = outputs + .iter() + .map(|out| out.i((.., 0))) + .collect::<Result<Vec<_>>>()?; + let outputs = outputs + .iter() + .map(|out| out.i((.., 1..))) + .collect::<Result<Vec<_>>>()?; + + let outputs = if reshape { + let (b, _c, w, h) = xs.dims4()?; + let patch_size = self.patch_embed.patch_size.0; + let num_channels = outputs[0].elem_count() / (b * (w / patch_size) * (h / patch_size)); + outputs + .iter() + .map(|out| { + out.reshape((b, w / patch_size, h / patch_size, num_channels))? + .transpose(2, 3)? + .transpose(1, 2) + }) + .collect::<Result<Vec<_>>>()? + } else { + outputs + }; + + let outputs = if return_class_token { + outputs + .iter() + .zip(class_tokens.iter()) + .map(|(out, class_token)| Tensor::cat(&[out, class_token], D::Minus1)) + .collect::<Result<Vec<_>>>()? + } else { + outputs + }; + + Tensor::stack(&outputs[..], 0) + } +} + +impl Module for BeitVisionTransformer { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let mut xs = self.prepare_tokens_with_mask(xs)?; + for blk in self.blocks.iter() { + xs = blk.forward(&xs)? + } + let xs_moy_local_tokens = xs.i((.., 1..))?.mean(1)?; + let xs_norm = self.norm.forward(&xs_moy_local_tokens)?; + self.head.forward(&xs_norm) + } +} + +pub fn vit_base(vb: VarBuilder) -> Result<BeitVisionTransformer> { + BeitVisionTransformer::new(vb, 12, 768, 12) +} + +pub fn vit_large(vb: VarBuilder) -> Result<BeitVisionTransformer> { + BeitVisionTransformer::new(vb, 24, 1024, 16) +} |