summaryrefslogtreecommitdiff
path: root/candle-transformers/src/models/t5.rs
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-09-17 09:00:45 +0200
committerGitHub <noreply@github.com>2023-09-17 08:00:45 +0100
commit1a276b5da79a4bb2305dde7368b800d165599819 (patch)
tree5270c7d9c0b6e345cfd65c3d74690c3488d65aa5 /candle-transformers/src/models/t5.rs
parent8658df348527cabcd722bfe2e9e48aba3c7f8e96 (diff)
downloadcandle-1a276b5da79a4bb2305dde7368b800d165599819.tar.gz
candle-1a276b5da79a4bb2305dde7368b800d165599819.tar.bz2
candle-1a276b5da79a4bb2305dde7368b800d165599819.zip
Add a KV cache to T5. (#873)
* Add a KV cache to T5. * Suggest using release mode. * Use the kv cache in decoding. * Add a comment.
Diffstat (limited to 'candle-transformers/src/models/t5.rs')
-rw-r--r--candle-transformers/src/models/t5.rs85
1 files changed, 58 insertions, 27 deletions
diff --git a/candle-transformers/src/models/t5.rs b/candle-transformers/src/models/t5.rs
index c35dea0b..8b621f64 100644
--- a/candle-transformers/src/models/t5.rs
+++ b/candle-transformers/src/models/t5.rs
@@ -54,7 +54,7 @@ pub struct Config {
is_decoder: bool,
is_encoder_decoder: bool,
#[serde(default = "default_use_cache")]
- use_cache: bool,
+ pub use_cache: bool,
pub pad_token_id: usize,
pub eos_token_id: usize,
}
@@ -245,10 +245,17 @@ struct T5Attention {
relative_attention_num_buckets: usize,
relative_attention_max_distance: usize,
inner_dim: usize,
+ use_cache: bool,
+ kv_cache: Option<(Tensor, Tensor)>,
}
impl T5Attention {
- fn load(has_relative_attention_bias: bool, vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ fn load(
+ has_relative_attention_bias: bool,
+ decoder: bool,
+ vb: VarBuilder,
+ cfg: &Config,
+ ) -> Result<Self> {
let inner_dim = cfg.num_heads * cfg.d_kv;
let q = linear_no_bias(cfg.d_model, inner_dim, vb.pp("q"))?;
let k = linear_no_bias(cfg.d_model, inner_dim, vb.pp("k"))?;
@@ -275,11 +282,13 @@ impl T5Attention {
relative_attention_num_buckets: cfg.relative_attention_num_buckets,
relative_attention_max_distance: cfg.relative_attention_max_distance,
inner_dim,
+ use_cache: cfg.use_cache && decoder,
+ kv_cache: None,
})
}
fn forward(
- &self,
+ &mut self,
xs: &Tensor,
position_bias: Option<&Tensor>,
key_value_states: Option<&Tensor>,
@@ -287,7 +296,6 @@ impl T5Attention {
) -> Result<(Tensor, Option<Tensor>)> {
// Performs Self-attention (if key_value_states is None) or attention
// over source sentence (provided by key_value_states).
- // TODO: kv caching.
let kv_input = match key_value_states {
None => xs,
Some(key_value_states) => key_value_states,
@@ -301,14 +309,22 @@ impl T5Attention {
.reshape((b_sz, q_len, self.n_heads, self.d_kv))?
.transpose(1, 2)?
.contiguous()?;
- let k = k
+ let mut k = k
.reshape((b_sz, kv_len, self.n_heads, self.d_kv))?
.transpose(1, 2)?
.contiguous()?;
- let v = v
+ let mut v = v
.reshape((b_sz, kv_len, self.n_heads, self.d_kv))?
.transpose(1, 2)?
.contiguous()?;
+
+ if self.use_cache {
+ if let Some((kv_cache_k, kv_cache_v)) = &self.kv_cache {
+ k = Tensor::cat(&[kv_cache_k, &k], 2)?.contiguous()?;
+ v = Tensor::cat(&[kv_cache_v, &v], 2)?.contiguous()?;
+ };
+ self.kv_cache = Some((k.clone(), v.clone()));
+ };
// TODO: Use flash_attn.
let scores = q.matmul(&k.t()?)?;
let scores = match mask {
@@ -394,8 +410,8 @@ struct T5LayerSelfAttention {
}
impl T5LayerSelfAttention {
- fn load(h: bool, vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let self_attention = T5Attention::load(h, vb.pp("SelfAttention"), cfg)?;
+ fn load(h: bool, d: bool, vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let self_attention = T5Attention::load(h, d, vb.pp("SelfAttention"), cfg)?;
let layer_norm =
T5LayerNorm::load(cfg.d_model, cfg.layer_norm_epsilon, vb.pp("layer_norm"))?;
Ok(Self {
@@ -405,7 +421,7 @@ impl T5LayerSelfAttention {
}
fn forward(
- &self,
+ &mut self,
xs: &Tensor,
position_bias: Option<&Tensor>,
mask: Option<&Tensor>,
@@ -426,8 +442,8 @@ struct T5LayerCrossAttention {
}
impl T5LayerCrossAttention {
- fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let cross_attention = T5Attention::load(false, vb.pp("EncDecAttention"), cfg)?;
+ fn load(decoder: bool, vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let cross_attention = T5Attention::load(false, decoder, vb.pp("EncDecAttention"), cfg)?;
let layer_norm =
T5LayerNorm::load(cfg.d_model, cfg.layer_norm_epsilon, vb.pp("layer_norm"))?;
Ok(Self {
@@ -437,7 +453,7 @@ impl T5LayerCrossAttention {
}
fn forward(
- &self,
+ &mut self,
hidden_states: &Tensor,
position_bias: Option<&Tensor>,
key_value_states: &Tensor,
@@ -462,11 +478,17 @@ struct T5Block {
}
impl T5Block {
- fn load(has_relative_attention_bias: bool, vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ fn load(
+ has_relative_attention_bias: bool,
+ decoder: bool,
+ vb: VarBuilder,
+ cfg: &Config,
+ ) -> Result<Self> {
let vb = vb.pp("layer");
- let self_attn = T5LayerSelfAttention::load(has_relative_attention_bias, vb.pp("0"), cfg)?;
+ let self_attn =
+ T5LayerSelfAttention::load(has_relative_attention_bias, decoder, vb.pp("0"), cfg)?;
let cross_attn = if cfg.is_decoder {
- Some(T5LayerCrossAttention::load(vb.pp("1"), cfg)?)
+ Some(T5LayerCrossAttention::load(decoder, vb.pp("1"), cfg)?)
} else {
None
};
@@ -480,19 +502,28 @@ impl T5Block {
}
fn forward(
- &self,
+ &mut self,
xs: &Tensor,
position_bias: Option<&Tensor>,
encoder_hidden_states: Option<&Tensor>,
) -> Result<(Tensor, Option<Tensor>)> {
// TODO: Cache masks
let mask = match self.cross_attn.is_some() {
- true => Some(get_mask(xs.dim(1)?, xs.device())?),
+ true => {
+ let mask_len = xs.dim(1)?;
+ // If the input seq length is 1, no need for a mask, this is also helpful to avoid shape
+ // issues when using the KV cache in the decoder.
+ if mask_len <= 1 {
+ None
+ } else {
+ Some(get_mask(mask_len, xs.device())?)
+ }
+ }
false => None,
};
let (mut xs, position_bias) = self.self_attn.forward(xs, position_bias, mask.as_ref())?;
// TODO: clamp for f16?
- if let Some(cross_attn) = &self.cross_attn {
+ if let Some(cross_attn) = &mut self.cross_attn {
(xs, _) = cross_attn.forward(&xs, None, encoder_hidden_states.unwrap())?;
// TODO: clamp for f16?
}
@@ -510,9 +541,9 @@ struct T5Stack {
}
impl T5Stack {
- fn load(vb: VarBuilder, shared: &Arc<Embedding>, cfg: &Config) -> Result<Self> {
+ fn load(decoder: bool, vb: VarBuilder, shared: &Arc<Embedding>, cfg: &Config) -> Result<Self> {
let block = (0..cfg.num_layers)
- .map(|i| T5Block::load(i == 0, vb.pp(&format!("block.{i}")), cfg))
+ .map(|i| T5Block::load(i == 0, decoder, vb.pp(&format!("block.{i}")), cfg))
.collect::<Result<Vec<_>>>()?;
let final_layer_norm = T5LayerNorm::load(
cfg.d_model,
@@ -527,14 +558,14 @@ impl T5Stack {
}
fn forward(
- &self,
+ &mut self,
input_ids: &Tensor,
encoder_hidden_states: Option<&Tensor>,
) -> Result<Tensor> {
let input_embeds = self.shared.as_ref().forward(input_ids)?;
let mut hidden_states = input_embeds;
let mut position_bias = None;
- for block in self.block.iter() {
+ for block in self.block.iter_mut() {
(hidden_states, position_bias) = block.forward(
&hidden_states,
position_bias.as_ref(),
@@ -555,14 +586,14 @@ impl T5EncoderModel {
pub fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let shared = embedding(cfg.vocab_size, cfg.d_model, vb.pp("shared"))?;
let shared = Arc::new(shared);
- let encoder = T5Stack::load(vb.pp("encoder"), &shared, cfg)?;
+ let encoder = T5Stack::load(false, vb.pp("encoder"), &shared, cfg)?;
Ok(Self {
encoder,
device: vb.device().clone(),
})
}
- pub fn forward(&self, input_ids: &Tensor) -> Result<Tensor> {
+ pub fn forward(&mut self, input_ids: &Tensor) -> Result<Tensor> {
self.encoder.forward(input_ids, None)
}
@@ -589,13 +620,13 @@ impl T5ForConditionalGeneration {
encoder_cfg.is_decoder = false;
encoder_cfg.use_cache = false;
encoder_cfg.is_encoder_decoder = false;
- let encoder = T5Stack::load(vb.pp("encoder"), &shared, &encoder_cfg)?;
+ let encoder = T5Stack::load(false, vb.pp("encoder"), &shared, &encoder_cfg)?;
let mut decoder_cfg = cfg.clone();
decoder_cfg.is_decoder = true;
decoder_cfg.is_encoder_decoder = false;
decoder_cfg.num_layers = cfg.num_decoder_layers.unwrap_or(cfg.num_layers);
- let decoder = T5Stack::load(vb.pp("decoder"), &shared, &decoder_cfg)?;
+ let decoder = T5Stack::load(true, vb.pp("decoder"), &shared, &decoder_cfg)?;
Ok(Self {
encoder,
@@ -605,7 +636,7 @@ impl T5ForConditionalGeneration {
})
}
- pub fn forward(&self, input_ids: &Tensor, decoder_input_ids: &Tensor) -> Result<Tensor> {
+ pub fn forward(&mut self, input_ids: &Tensor, decoder_input_ids: &Tensor) -> Result<Tensor> {
let encoder_output = self.encoder.forward(input_ids, None)?;
let decoder_output = self
.decoder