summaryrefslogtreecommitdiff
path: root/candle-transformers/src/models/vgg.rs
diff options
context:
space:
mode:
authorzachcp <zachcp@users.noreply.github.com>2024-11-15 02:30:15 -0500
committerGitHub <noreply@github.com>2024-11-15 08:30:15 +0100
commitf689ce5d39c6f1475dfc71503288ea2905c8f685 (patch)
tree10b35ae68f1f5683edfebdcf92970de78ba05283 /candle-transformers/src/models/vgg.rs
parent0ed24b9852ccc7dfb92d555afba3d56c2a3f3224 (diff)
downloadcandle-f689ce5d39c6f1475dfc71503288ea2905c8f685.tar.gz
candle-f689ce5d39c6f1475dfc71503288ea2905c8f685.tar.bz2
candle-f689ce5d39c6f1475dfc71503288ea2905c8f685.zip
Documentation Pass for Models (#2617)
* links in chinese_clip * links for clip model * add mod docs for flux and llava * module doc for MMDIT and MIMI * add docs for a few more modesl * mod docs for bert naser and beit * add module docs for convmixer colpali codegeex and chatglm * add another series of moddocs * add fastvit-llama2_c * module docs mamba -> mobileone * module docs from moondream-phi3 * mod docs for quantized and qwen * update to yi * fix long names * Update llama2_c.rs * Update llama2_c_weights.rs * Fix the link for mimi + tweaks --------- Co-authored-by: Laurent Mazare <laurent.mazare@gmail.com>
Diffstat (limited to 'candle-transformers/src/models/vgg.rs')
-rw-r--r--candle-transformers/src/models/vgg.rs15
1 files changed, 13 insertions, 2 deletions
diff --git a/candle-transformers/src/models/vgg.rs b/candle-transformers/src/models/vgg.rs
index 010643c8..57f9ae67 100644
--- a/candle-transformers/src/models/vgg.rs
+++ b/candle-transformers/src/models/vgg.rs
@@ -1,7 +1,18 @@
//! VGG-16 model implementation.
//!
-//! See Very Deep Convolutional Networks for Large-Scale Image Recognition
-//! <https://arxiv.org/abs/1409.1556>
+//! VGG-16 is a convolutional neural network architecture. It consists of 13
+//! convolutional layers followed by 3 fully connected layers.
+//!
+//! Key characteristics:
+//! - Conv layers with 3x3 filters
+//! - Max pooling after every 2-3 conv layers
+//! - Three fully connected layers of 4096, 4096, 1000 units
+//! - ReLU activation and dropout
+//!
+//! References:
+//! - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556)
+//!
+
use candle::{ModuleT, Result, Tensor};
use candle_nn::{FuncT, VarBuilder};