summaryrefslogtreecommitdiff
path: root/candle-transformers/src/models/wuerstchen/common.rs
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-09-14 11:56:07 +0200
committerGitHub <noreply@github.com>2023-09-14 10:56:07 +0100
commit286f01db1471a48b6050d9eddb6cf4f28ed7d8cb (patch)
tree1b439edf5d890d189f4a26d88005b9da434b1aab /candle-transformers/src/models/wuerstchen/common.rs
parentd6447ad635bc450ef1f15ca7a4424c0f86e7a90a (diff)
downloadcandle-286f01db1471a48b6050d9eddb6cf4f28ed7d8cb.tar.gz
candle-286f01db1471a48b6050d9eddb6cf4f28ed7d8cb.tar.bz2
candle-286f01db1471a48b6050d9eddb6cf4f28ed7d8cb.zip
Start adding the Wuerstchen diffusion pipeline (#843)
* Wuerstchen common bits. * Add the prior layer. * Start adding diffnext.
Diffstat (limited to 'candle-transformers/src/models/wuerstchen/common.rs')
-rw-r--r--candle-transformers/src/models/wuerstchen/common.rs126
1 files changed, 126 insertions, 0 deletions
diff --git a/candle-transformers/src/models/wuerstchen/common.rs b/candle-transformers/src/models/wuerstchen/common.rs
new file mode 100644
index 00000000..fc731a59
--- /dev/null
+++ b/candle-transformers/src/models/wuerstchen/common.rs
@@ -0,0 +1,126 @@
+use candle::{Module, Result, Tensor, D};
+use candle_nn::VarBuilder;
+
+// https://github.com/huggingface/diffusers/blob/19edca82f1ff194c07317369a92b470dbae97f34/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py#L22
+#[derive(Debug)]
+pub struct WLayerNorm {
+ inner: candle_nn::LayerNorm,
+}
+
+impl WLayerNorm {
+ pub fn new(size: usize, vb: VarBuilder) -> Result<Self> {
+ let cfg = candle_nn::layer_norm::LayerNormConfig {
+ eps: 1e-6,
+ remove_mean: true,
+ affine: false,
+ };
+ let inner = candle_nn::layer_norm(size, cfg, vb)?;
+ Ok(Self { inner })
+ }
+}
+
+impl Module for WLayerNorm {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ xs.permute((0, 2, 3, 1))?
+ .apply(&self.inner)?
+ .permute((0, 3, 1, 2))
+ }
+}
+
+#[derive(Debug)]
+pub struct TimestepBlock {
+ mapper: candle_nn::Linear,
+}
+
+impl TimestepBlock {
+ pub fn new(c: usize, c_timestep: usize, vb: VarBuilder) -> Result<Self> {
+ let mapper = candle_nn::linear(c_timestep, c * 2, vb.pp("mapper"))?;
+ Ok(Self { mapper })
+ }
+
+ pub fn forward(&self, xs: &Tensor, t: &Tensor) -> Result<Tensor> {
+ let ab = self
+ .mapper
+ .forward(t)?
+ .unsqueeze(2)?
+ .unsqueeze(3)?
+ .chunk(2, 1)?;
+ xs.broadcast_mul(&(&ab[0] + 1.)?)?.broadcast_add(&ab[1])
+ }
+}
+
+#[derive(Debug)]
+pub struct GlobalResponseNorm {
+ gamma: Tensor,
+ beta: Tensor,
+}
+
+impl GlobalResponseNorm {
+ pub fn new(dim: usize, vb: VarBuilder) -> Result<Self> {
+ let gamma = vb.get((1, 1, 1, 1, dim), "gamma")?;
+ let beta = vb.get((1, 1, 1, 1, dim), "beta")?;
+ Ok(Self { gamma, beta })
+ }
+}
+
+impl Module for GlobalResponseNorm {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let agg_norm = xs.sqr()?.sum_keepdim((1, 2))?;
+ let stand_div_norm =
+ agg_norm.broadcast_div(&(agg_norm.mean_keepdim(D::Minus1)? + 1e-6)?)?;
+ (xs.broadcast_mul(&stand_div_norm)?
+ .broadcast_mul(&self.gamma)
+ + &self.beta)?
+ + xs
+ }
+}
+
+#[derive(Debug)]
+pub struct ResBlock {
+ depthwise: candle_nn::Conv2d,
+ norm: WLayerNorm,
+ channelwise_lin1: candle_nn::Linear,
+ channelwise_grn: GlobalResponseNorm,
+ channelwise_lin2: candle_nn::Linear,
+}
+
+impl ResBlock {
+ pub fn new(c: usize, c_skip: usize, ksize: usize, vb: VarBuilder) -> Result<Self> {
+ let cfg = candle_nn::Conv2dConfig {
+ padding: ksize / 2,
+ groups: c,
+ ..Default::default()
+ };
+ let depthwise = candle_nn::conv2d(c + c_skip, c, ksize, cfg, vb.pp("depthwise"))?;
+ let norm = WLayerNorm::new(c, vb.pp("norm"))?;
+ let channelwise_lin1 = candle_nn::linear(c, c * 4, vb.pp("channelwise.0"))?;
+ let channelwise_grn = GlobalResponseNorm::new(c * 4, vb.pp("channelwise.2"))?;
+ let channelwise_lin2 = candle_nn::linear(c * 4, c, vb.pp("channelwise.4"))?;
+ Ok(Self {
+ depthwise,
+ norm,
+ channelwise_lin1,
+ channelwise_grn,
+ channelwise_lin2,
+ })
+ }
+
+ pub fn forward(&self, xs: &Tensor, x_skip: Option<&Tensor>) -> Result<Tensor> {
+ let x_res = xs;
+ let xs = match x_skip {
+ None => xs.clone(),
+ Some(x_skip) => Tensor::cat(&[xs, x_skip], 1)?,
+ };
+ let xs = xs
+ .apply(&self.depthwise)?
+ .apply(&self.norm)?
+ .permute((0, 2, 3, 1))?;
+ let xs = xs
+ .apply(&self.channelwise_lin1)?
+ .gelu()?
+ .apply(&self.channelwise_grn)?
+ .apply(&self.channelwise_lin2)?
+ .permute((0, 3, 1, 2))?;
+ xs + x_res
+ }
+}