diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-09-14 11:56:07 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-09-14 10:56:07 +0100 |
commit | 286f01db1471a48b6050d9eddb6cf4f28ed7d8cb (patch) | |
tree | 1b439edf5d890d189f4a26d88005b9da434b1aab /candle-transformers/src/models/wuerstchen/common.rs | |
parent | d6447ad635bc450ef1f15ca7a4424c0f86e7a90a (diff) | |
download | candle-286f01db1471a48b6050d9eddb6cf4f28ed7d8cb.tar.gz candle-286f01db1471a48b6050d9eddb6cf4f28ed7d8cb.tar.bz2 candle-286f01db1471a48b6050d9eddb6cf4f28ed7d8cb.zip |
Start adding the Wuerstchen diffusion pipeline (#843)
* Wuerstchen common bits.
* Add the prior layer.
* Start adding diffnext.
Diffstat (limited to 'candle-transformers/src/models/wuerstchen/common.rs')
-rw-r--r-- | candle-transformers/src/models/wuerstchen/common.rs | 126 |
1 files changed, 126 insertions, 0 deletions
diff --git a/candle-transformers/src/models/wuerstchen/common.rs b/candle-transformers/src/models/wuerstchen/common.rs new file mode 100644 index 00000000..fc731a59 --- /dev/null +++ b/candle-transformers/src/models/wuerstchen/common.rs @@ -0,0 +1,126 @@ +use candle::{Module, Result, Tensor, D}; +use candle_nn::VarBuilder; + +// https://github.com/huggingface/diffusers/blob/19edca82f1ff194c07317369a92b470dbae97f34/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py#L22 +#[derive(Debug)] +pub struct WLayerNorm { + inner: candle_nn::LayerNorm, +} + +impl WLayerNorm { + pub fn new(size: usize, vb: VarBuilder) -> Result<Self> { + let cfg = candle_nn::layer_norm::LayerNormConfig { + eps: 1e-6, + remove_mean: true, + affine: false, + }; + let inner = candle_nn::layer_norm(size, cfg, vb)?; + Ok(Self { inner }) + } +} + +impl Module for WLayerNorm { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + xs.permute((0, 2, 3, 1))? + .apply(&self.inner)? + .permute((0, 3, 1, 2)) + } +} + +#[derive(Debug)] +pub struct TimestepBlock { + mapper: candle_nn::Linear, +} + +impl TimestepBlock { + pub fn new(c: usize, c_timestep: usize, vb: VarBuilder) -> Result<Self> { + let mapper = candle_nn::linear(c_timestep, c * 2, vb.pp("mapper"))?; + Ok(Self { mapper }) + } + + pub fn forward(&self, xs: &Tensor, t: &Tensor) -> Result<Tensor> { + let ab = self + .mapper + .forward(t)? + .unsqueeze(2)? + .unsqueeze(3)? + .chunk(2, 1)?; + xs.broadcast_mul(&(&ab[0] + 1.)?)?.broadcast_add(&ab[1]) + } +} + +#[derive(Debug)] +pub struct GlobalResponseNorm { + gamma: Tensor, + beta: Tensor, +} + +impl GlobalResponseNorm { + pub fn new(dim: usize, vb: VarBuilder) -> Result<Self> { + let gamma = vb.get((1, 1, 1, 1, dim), "gamma")?; + let beta = vb.get((1, 1, 1, 1, dim), "beta")?; + Ok(Self { gamma, beta }) + } +} + +impl Module for GlobalResponseNorm { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let agg_norm = xs.sqr()?.sum_keepdim((1, 2))?; + let stand_div_norm = + agg_norm.broadcast_div(&(agg_norm.mean_keepdim(D::Minus1)? + 1e-6)?)?; + (xs.broadcast_mul(&stand_div_norm)? + .broadcast_mul(&self.gamma) + + &self.beta)? + + xs + } +} + +#[derive(Debug)] +pub struct ResBlock { + depthwise: candle_nn::Conv2d, + norm: WLayerNorm, + channelwise_lin1: candle_nn::Linear, + channelwise_grn: GlobalResponseNorm, + channelwise_lin2: candle_nn::Linear, +} + +impl ResBlock { + pub fn new(c: usize, c_skip: usize, ksize: usize, vb: VarBuilder) -> Result<Self> { + let cfg = candle_nn::Conv2dConfig { + padding: ksize / 2, + groups: c, + ..Default::default() + }; + let depthwise = candle_nn::conv2d(c + c_skip, c, ksize, cfg, vb.pp("depthwise"))?; + let norm = WLayerNorm::new(c, vb.pp("norm"))?; + let channelwise_lin1 = candle_nn::linear(c, c * 4, vb.pp("channelwise.0"))?; + let channelwise_grn = GlobalResponseNorm::new(c * 4, vb.pp("channelwise.2"))?; + let channelwise_lin2 = candle_nn::linear(c * 4, c, vb.pp("channelwise.4"))?; + Ok(Self { + depthwise, + norm, + channelwise_lin1, + channelwise_grn, + channelwise_lin2, + }) + } + + pub fn forward(&self, xs: &Tensor, x_skip: Option<&Tensor>) -> Result<Tensor> { + let x_res = xs; + let xs = match x_skip { + None => xs.clone(), + Some(x_skip) => Tensor::cat(&[xs, x_skip], 1)?, + }; + let xs = xs + .apply(&self.depthwise)? + .apply(&self.norm)? + .permute((0, 2, 3, 1))?; + let xs = xs + .apply(&self.channelwise_lin1)? + .gelu()? + .apply(&self.channelwise_grn)? + .apply(&self.channelwise_lin2)? + .permute((0, 3, 1, 2))?; + xs + x_res + } +} |