diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2024-02-11 17:04:57 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-02-11 17:04:57 +0100 |
commit | 1e26d539d9f9574222e8d049fdbfadfa09e3ce2e (patch) | |
tree | 0fee8fdca3dd10f47ebbcdb2724249363dbe53aa /candle-transformers/src | |
parent | 74497e6bf738366d4c599b42826e204fbcb96f37 (diff) | |
download | candle-1e26d539d9f9574222e8d049fdbfadfa09e3ce2e.tar.gz candle-1e26d539d9f9574222e8d049fdbfadfa09e3ce2e.tar.bz2 candle-1e26d539d9f9574222e8d049fdbfadfa09e3ce2e.zip |
Improved mamba model optimized for inference (#1694)
* Sketch the mamba model for inference.
* Complete the forward pass.
* Add the mamba example.
* Optimize the selective-scan part.
* Fix a couple shape mismatches and get inference to work.
* Tweak the readmes.
* More readme tweaks.
Diffstat (limited to 'candle-transformers/src')
-rw-r--r-- | candle-transformers/src/models/mamba.rs | 211 | ||||
-rw-r--r-- | candle-transformers/src/models/mod.rs | 1 |
2 files changed, 212 insertions, 0 deletions
diff --git a/candle-transformers/src/models/mamba.rs b/candle-transformers/src/models/mamba.rs new file mode 100644 index 00000000..da254bd1 --- /dev/null +++ b/candle-transformers/src/models/mamba.rs @@ -0,0 +1,211 @@ +#![allow(unused)] +/// A fast implementation of mamba for inference only. +/// This is based on: https://github.com/LaurentMazare/mamba.rs +use crate::models::with_tracing::{linear, linear_no_bias, Linear}; +use candle::{DType, Device, IndexOp, Module, Result, Tensor, D}; +use candle_nn::{RmsNorm, VarBuilder}; + +const D_CONV: usize = 4; +const D_STATE: usize = 16; + +#[derive(Debug, Clone, serde::Deserialize)] +pub struct Config { + d_model: usize, + n_layer: usize, + vocab_size: usize, + pad_vocab_size_multiple: usize, +} + +impl Config { + fn vocab_size(&self) -> usize { + let pad = self.pad_vocab_size_multiple; + (self.vocab_size + pad - 1) / pad * pad + } + + fn dt_rank(&self) -> usize { + (self.d_model + 15) / 16 + } + + fn d_inner(&self) -> usize { + self.d_model * 2 + } +} + +pub struct State { + hs: Vec<Tensor>, + prev_xs: Vec<[Tensor; D_CONV]>, + pos: usize, +} + +impl State { + pub fn new(batch_size: usize, cfg: &Config, device: &Device) -> Result<Self> { + let mut hs = Vec::with_capacity(cfg.n_layer); + let mut prev_xs = Vec::with_capacity(cfg.n_layer); + for _i in 0..cfg.n_layer { + let h = Tensor::zeros((batch_size, cfg.d_inner(), D_STATE), DType::F32, device)?; + let x = Tensor::zeros((batch_size, cfg.d_inner()), DType::F32, device)?; + hs.push(h); + prev_xs.push([x.clone(), x.clone(), x.clone(), x.clone()]); + } + Ok(Self { + hs, + prev_xs, + pos: 0, + }) + } +} + +#[derive(Clone, Debug)] +pub struct MambaBlock { + in_proj: Linear, + conv1d_bias: Tensor, + conv1d_weights: [Tensor; D_CONV], + x_proj: Linear, + dt_proj: Linear, + a_log: Tensor, + d: Tensor, + out_proj: Linear, + dt_rank: usize, + layer_index: usize, + d_inner: usize, +} + +impl MambaBlock { + pub fn new(layer_index: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> { + let d_inner = cfg.d_inner(); + let dt_rank = cfg.dt_rank(); + let in_proj = linear_no_bias(cfg.d_model, d_inner * 2, vb.pp("in_proj"))?; + let x_proj = linear_no_bias(d_inner, dt_rank + D_STATE * 2, vb.pp("x_proj"))?; + let dt_proj = linear(dt_rank, d_inner, vb.pp("dt_proj"))?; + let a_log = vb.get((d_inner, D_STATE), "A_log")?; + let d = vb.get(d_inner, "D")?; + let out_proj = linear_no_bias(d_inner, cfg.d_model, vb.pp("out_proj"))?; + let conv1d_bias = vb.get(d_inner, "conv1d.bias")?; + let conv1d_weight = vb.get((d_inner, 1, D_CONV), "conv1d.weight")?; + let conv1d_weights = [ + conv1d_weight.i((.., 0, 0))?, + conv1d_weight.i((.., 0, 1))?, + conv1d_weight.i((.., 0, 2))?, + conv1d_weight.i((.., 0, 3))?, + ]; + Ok(Self { + in_proj, + conv1d_bias, + conv1d_weights, + x_proj, + dt_proj, + a_log, + d, + out_proj, + dt_rank, + layer_index, + d_inner, + }) + } + + pub fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> { + let (b_sz, _dim) = xs.dims2()?; + let li = self.layer_index; + let mut xs = xs.apply(&self.in_proj)?.chunk(2, D::Minus1)?; + let proj_for_silu = xs.remove(1); + state.prev_xs[li][state.pos % D_CONV] = xs.remove(0); + let mut proj_for_conv = self.conv1d_bias.broadcast_as((b_sz, self.d_inner))?; + for d_c in 0..D_CONV { + proj_for_conv = (proj_for_conv + + self.conv1d_weights[d_c] + .broadcast_mul(&state.prev_xs[li][(d_c + 1 + state.pos) % D_CONV])?)?; + } + let proj_for_conv = candle_nn::ops::silu(&proj_for_conv)?; + // SSM + Selection, we're doing inference here so only need the last step of + // the sequence. + // Algorithm 3.2 on page 6, https://arxiv.org/pdf/2312.00752.pdf + + let x_proj = self.x_proj.forward(&proj_for_conv)?; + let delta = x_proj.narrow(D::Minus1, 0, self.dt_rank)?; + let b = x_proj.narrow(D::Minus1, self.dt_rank, D_STATE)?; + let c = x_proj.narrow(D::Minus1, self.dt_rank + D_STATE, D_STATE)?; + + let delta = delta.apply(&self.dt_proj)?; + // softplus + let delta = (delta.exp()? + 1.)?.log()?; + let a = self.a_log.to_dtype(candle::DType::F32)?.exp()?.neg()?; + let d = self.d.to_dtype(candle::DType::F32)?; + + // Selective scan part + // Eqn (2a), page 3, h_t = Ab h_{t-1} + Bb x_t + let delta = delta + .unsqueeze(D::Minus1)? + .broadcast_as((b_sz, self.d_inner, D_STATE))?; + let a = a.broadcast_as((b_sz, self.d_inner, D_STATE))?; + let b = b.broadcast_as((b_sz, self.d_inner, D_STATE))?; + let proj_for_conv_b = + proj_for_conv + .unsqueeze(D::Minus1)? + .broadcast_as((b_sz, self.d_inner, D_STATE))?; + state.hs[li] = ((&state.hs[li] * (&delta * &a)?.exp()?)? + &delta * &b * &proj_for_conv_b)?; + let ss = (state.hs[li] + .matmul(&c.unsqueeze(D::Minus1)?)? + .squeeze(D::Minus1)? + + proj_for_conv.broadcast_mul(&d)?)?; + + let ys = (ss * candle_nn::ops::silu(&proj_for_silu))?; + ys.apply(&self.out_proj) + } +} + +#[derive(Clone, Debug)] +pub struct ResidualBlock { + mixer: MambaBlock, + norm: RmsNorm, +} + +impl ResidualBlock { + pub fn new(layer_index: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> { + let norm = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm"))?; + let mixer = MambaBlock::new(layer_index, cfg, vb.pp("mixer"))?; + Ok(Self { mixer, norm }) + } + + fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> { + self.mixer.forward(&xs.apply(&self.norm)?, state)? + xs + } +} + +// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L56 +#[derive(Clone, Debug)] +pub struct Model { + embedding: candle_nn::Embedding, + layers: Vec<ResidualBlock>, + norm_f: RmsNorm, + lm_head: Linear, +} + +impl Model { + pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { + let embedding = candle_nn::embedding(cfg.vocab_size(), cfg.d_model, vb.pp("embedding"))?; + let mut layers = Vec::with_capacity(cfg.n_layer); + let vb_l = vb.pp("layers"); + for layer_idx in 0..cfg.n_layer { + let layer = ResidualBlock::new(layer_idx, cfg, vb_l.pp(layer_idx))?; + layers.push(layer) + } + let norm_f = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm_f"))?; + let lm_head = Linear::from_weights(embedding.embeddings().clone(), None); + Ok(Self { + embedding, + layers, + norm_f, + lm_head, + }) + } + + pub fn forward(&self, input_ids: &Tensor, state: &mut State) -> Result<Tensor> { + let _b_size = input_ids.dims1()?; + let mut xs = self.embedding.forward(input_ids)?; + for layer in self.layers.iter() { + xs = layer.forward(&xs, state)? + } + state.pos += 1; + xs.apply(&self.norm_f)?.apply(&self.lm_head) + } +} diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs index f3782fff..769fd650 100644 --- a/candle-transformers/src/models/mod.rs +++ b/candle-transformers/src/models/mod.rs @@ -13,6 +13,7 @@ pub mod jina_bert; pub mod llama; pub mod llama2_c; pub mod llama2_c_weights; +pub mod mamba; pub mod marian; pub mod mistral; pub mod mixformer; |