summaryrefslogtreecommitdiff
path: root/candle-transformers/src
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2024-02-11 17:04:57 +0100
committerGitHub <noreply@github.com>2024-02-11 17:04:57 +0100
commit1e26d539d9f9574222e8d049fdbfadfa09e3ce2e (patch)
tree0fee8fdca3dd10f47ebbcdb2724249363dbe53aa /candle-transformers/src
parent74497e6bf738366d4c599b42826e204fbcb96f37 (diff)
downloadcandle-1e26d539d9f9574222e8d049fdbfadfa09e3ce2e.tar.gz
candle-1e26d539d9f9574222e8d049fdbfadfa09e3ce2e.tar.bz2
candle-1e26d539d9f9574222e8d049fdbfadfa09e3ce2e.zip
Improved mamba model optimized for inference (#1694)
* Sketch the mamba model for inference. * Complete the forward pass. * Add the mamba example. * Optimize the selective-scan part. * Fix a couple shape mismatches and get inference to work. * Tweak the readmes. * More readme tweaks.
Diffstat (limited to 'candle-transformers/src')
-rw-r--r--candle-transformers/src/models/mamba.rs211
-rw-r--r--candle-transformers/src/models/mod.rs1
2 files changed, 212 insertions, 0 deletions
diff --git a/candle-transformers/src/models/mamba.rs b/candle-transformers/src/models/mamba.rs
new file mode 100644
index 00000000..da254bd1
--- /dev/null
+++ b/candle-transformers/src/models/mamba.rs
@@ -0,0 +1,211 @@
+#![allow(unused)]
+/// A fast implementation of mamba for inference only.
+/// This is based on: https://github.com/LaurentMazare/mamba.rs
+use crate::models::with_tracing::{linear, linear_no_bias, Linear};
+use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
+use candle_nn::{RmsNorm, VarBuilder};
+
+const D_CONV: usize = 4;
+const D_STATE: usize = 16;
+
+#[derive(Debug, Clone, serde::Deserialize)]
+pub struct Config {
+ d_model: usize,
+ n_layer: usize,
+ vocab_size: usize,
+ pad_vocab_size_multiple: usize,
+}
+
+impl Config {
+ fn vocab_size(&self) -> usize {
+ let pad = self.pad_vocab_size_multiple;
+ (self.vocab_size + pad - 1) / pad * pad
+ }
+
+ fn dt_rank(&self) -> usize {
+ (self.d_model + 15) / 16
+ }
+
+ fn d_inner(&self) -> usize {
+ self.d_model * 2
+ }
+}
+
+pub struct State {
+ hs: Vec<Tensor>,
+ prev_xs: Vec<[Tensor; D_CONV]>,
+ pos: usize,
+}
+
+impl State {
+ pub fn new(batch_size: usize, cfg: &Config, device: &Device) -> Result<Self> {
+ let mut hs = Vec::with_capacity(cfg.n_layer);
+ let mut prev_xs = Vec::with_capacity(cfg.n_layer);
+ for _i in 0..cfg.n_layer {
+ let h = Tensor::zeros((batch_size, cfg.d_inner(), D_STATE), DType::F32, device)?;
+ let x = Tensor::zeros((batch_size, cfg.d_inner()), DType::F32, device)?;
+ hs.push(h);
+ prev_xs.push([x.clone(), x.clone(), x.clone(), x.clone()]);
+ }
+ Ok(Self {
+ hs,
+ prev_xs,
+ pos: 0,
+ })
+ }
+}
+
+#[derive(Clone, Debug)]
+pub struct MambaBlock {
+ in_proj: Linear,
+ conv1d_bias: Tensor,
+ conv1d_weights: [Tensor; D_CONV],
+ x_proj: Linear,
+ dt_proj: Linear,
+ a_log: Tensor,
+ d: Tensor,
+ out_proj: Linear,
+ dt_rank: usize,
+ layer_index: usize,
+ d_inner: usize,
+}
+
+impl MambaBlock {
+ pub fn new(layer_index: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let d_inner = cfg.d_inner();
+ let dt_rank = cfg.dt_rank();
+ let in_proj = linear_no_bias(cfg.d_model, d_inner * 2, vb.pp("in_proj"))?;
+ let x_proj = linear_no_bias(d_inner, dt_rank + D_STATE * 2, vb.pp("x_proj"))?;
+ let dt_proj = linear(dt_rank, d_inner, vb.pp("dt_proj"))?;
+ let a_log = vb.get((d_inner, D_STATE), "A_log")?;
+ let d = vb.get(d_inner, "D")?;
+ let out_proj = linear_no_bias(d_inner, cfg.d_model, vb.pp("out_proj"))?;
+ let conv1d_bias = vb.get(d_inner, "conv1d.bias")?;
+ let conv1d_weight = vb.get((d_inner, 1, D_CONV), "conv1d.weight")?;
+ let conv1d_weights = [
+ conv1d_weight.i((.., 0, 0))?,
+ conv1d_weight.i((.., 0, 1))?,
+ conv1d_weight.i((.., 0, 2))?,
+ conv1d_weight.i((.., 0, 3))?,
+ ];
+ Ok(Self {
+ in_proj,
+ conv1d_bias,
+ conv1d_weights,
+ x_proj,
+ dt_proj,
+ a_log,
+ d,
+ out_proj,
+ dt_rank,
+ layer_index,
+ d_inner,
+ })
+ }
+
+ pub fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> {
+ let (b_sz, _dim) = xs.dims2()?;
+ let li = self.layer_index;
+ let mut xs = xs.apply(&self.in_proj)?.chunk(2, D::Minus1)?;
+ let proj_for_silu = xs.remove(1);
+ state.prev_xs[li][state.pos % D_CONV] = xs.remove(0);
+ let mut proj_for_conv = self.conv1d_bias.broadcast_as((b_sz, self.d_inner))?;
+ for d_c in 0..D_CONV {
+ proj_for_conv = (proj_for_conv
+ + self.conv1d_weights[d_c]
+ .broadcast_mul(&state.prev_xs[li][(d_c + 1 + state.pos) % D_CONV])?)?;
+ }
+ let proj_for_conv = candle_nn::ops::silu(&proj_for_conv)?;
+ // SSM + Selection, we're doing inference here so only need the last step of
+ // the sequence.
+ // Algorithm 3.2 on page 6, https://arxiv.org/pdf/2312.00752.pdf
+
+ let x_proj = self.x_proj.forward(&proj_for_conv)?;
+ let delta = x_proj.narrow(D::Minus1, 0, self.dt_rank)?;
+ let b = x_proj.narrow(D::Minus1, self.dt_rank, D_STATE)?;
+ let c = x_proj.narrow(D::Minus1, self.dt_rank + D_STATE, D_STATE)?;
+
+ let delta = delta.apply(&self.dt_proj)?;
+ // softplus
+ let delta = (delta.exp()? + 1.)?.log()?;
+ let a = self.a_log.to_dtype(candle::DType::F32)?.exp()?.neg()?;
+ let d = self.d.to_dtype(candle::DType::F32)?;
+
+ // Selective scan part
+ // Eqn (2a), page 3, h_t = Ab h_{t-1} + Bb x_t
+ let delta = delta
+ .unsqueeze(D::Minus1)?
+ .broadcast_as((b_sz, self.d_inner, D_STATE))?;
+ let a = a.broadcast_as((b_sz, self.d_inner, D_STATE))?;
+ let b = b.broadcast_as((b_sz, self.d_inner, D_STATE))?;
+ let proj_for_conv_b =
+ proj_for_conv
+ .unsqueeze(D::Minus1)?
+ .broadcast_as((b_sz, self.d_inner, D_STATE))?;
+ state.hs[li] = ((&state.hs[li] * (&delta * &a)?.exp()?)? + &delta * &b * &proj_for_conv_b)?;
+ let ss = (state.hs[li]
+ .matmul(&c.unsqueeze(D::Minus1)?)?
+ .squeeze(D::Minus1)?
+ + proj_for_conv.broadcast_mul(&d)?)?;
+
+ let ys = (ss * candle_nn::ops::silu(&proj_for_silu))?;
+ ys.apply(&self.out_proj)
+ }
+}
+
+#[derive(Clone, Debug)]
+pub struct ResidualBlock {
+ mixer: MambaBlock,
+ norm: RmsNorm,
+}
+
+impl ResidualBlock {
+ pub fn new(layer_index: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let norm = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm"))?;
+ let mixer = MambaBlock::new(layer_index, cfg, vb.pp("mixer"))?;
+ Ok(Self { mixer, norm })
+ }
+
+ fn forward(&self, xs: &Tensor, state: &mut State) -> Result<Tensor> {
+ self.mixer.forward(&xs.apply(&self.norm)?, state)? + xs
+ }
+}
+
+// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L56
+#[derive(Clone, Debug)]
+pub struct Model {
+ embedding: candle_nn::Embedding,
+ layers: Vec<ResidualBlock>,
+ norm_f: RmsNorm,
+ lm_head: Linear,
+}
+
+impl Model {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let embedding = candle_nn::embedding(cfg.vocab_size(), cfg.d_model, vb.pp("embedding"))?;
+ let mut layers = Vec::with_capacity(cfg.n_layer);
+ let vb_l = vb.pp("layers");
+ for layer_idx in 0..cfg.n_layer {
+ let layer = ResidualBlock::new(layer_idx, cfg, vb_l.pp(layer_idx))?;
+ layers.push(layer)
+ }
+ let norm_f = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm_f"))?;
+ let lm_head = Linear::from_weights(embedding.embeddings().clone(), None);
+ Ok(Self {
+ embedding,
+ layers,
+ norm_f,
+ lm_head,
+ })
+ }
+
+ pub fn forward(&self, input_ids: &Tensor, state: &mut State) -> Result<Tensor> {
+ let _b_size = input_ids.dims1()?;
+ let mut xs = self.embedding.forward(input_ids)?;
+ for layer in self.layers.iter() {
+ xs = layer.forward(&xs, state)?
+ }
+ state.pos += 1;
+ xs.apply(&self.norm_f)?.apply(&self.lm_head)
+ }
+}
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index f3782fff..769fd650 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -13,6 +13,7 @@ pub mod jina_bert;
pub mod llama;
pub mod llama2_c;
pub mod llama2_c_weights;
+pub mod mamba;
pub mod marian;
pub mod mistral;
pub mod mixformer;