summaryrefslogtreecommitdiff
path: root/candle-transformers
diff options
context:
space:
mode:
authordonjuanplatinum <113148619+donjuanplatinum@users.noreply.github.com>2024-07-21 19:00:41 +0800
committerGitHub <noreply@github.com>2024-07-21 13:00:41 +0200
commit2489a606fe1a66519da37e4237907926c1ee48a7 (patch)
tree2e2e90d8dbe8f3ae7048aa368504b6a1e60588fb /candle-transformers
parent3c815b1dcaf4b7ef6a2e29678c296eb64431ee69 (diff)
downloadcandle-2489a606fe1a66519da37e4237907926c1ee48a7.tar.gz
candle-2489a606fe1a66519da37e4237907926c1ee48a7.tar.bz2
candle-2489a606fe1a66519da37e4237907926c1ee48a7.zip
feat(candle-transformers/models/codegeex4-9b): add codegeex4-9 (#2334)
* feat(candle-transformers/models/codegeex4-9b): add codegeex4-9b transoformers * change mod.rs * feat(candle-examples/codegeex4-9b) * Update codegeex4_9b.rs * Update main.rs * Update codegeex4_9b.rs * Update main.rs * fmt * fix * fmt * Clippy fix. * Remove some print statements. * Avoid using unwrap. * 1. add README 2. change the print fmt * Another clippy fix. --------- Co-authored-by: Laurent <laurent.mazare@gmail.com>
Diffstat (limited to 'candle-transformers')
-rw-r--r--candle-transformers/src/models/codegeex4_9b.rs596
-rw-r--r--candle-transformers/src/models/mod.rs1
2 files changed, 597 insertions, 0 deletions
diff --git a/candle-transformers/src/models/codegeex4_9b.rs b/candle-transformers/src/models/codegeex4_9b.rs
new file mode 100644
index 00000000..aaa99fd9
--- /dev/null
+++ b/candle-transformers/src/models/codegeex4_9b.rs
@@ -0,0 +1,596 @@
+use crate::models::with_tracing::{linear_b as linear, Linear};
+use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
+use candle_nn::VarBuilder;
+
+#[derive(Debug, Clone)]
+pub struct Config {
+ pub num_layers: usize,
+ pub padded_vocab_size: usize,
+ pub hidden_size: usize,
+ pub ffn_hidden_size: usize,
+ pub kv_channels: usize,
+ pub num_attention_heads: usize,
+ pub seq_length: usize,
+ pub layernorm_epsilon: f64,
+ pub rmsnorm: bool,
+ pub apply_residual_connection_post_layernorm: bool,
+ pub post_layer_norm: bool,
+ pub add_bias_linear: bool,
+ pub add_qkv_bias: bool,
+ pub bias_dropout_fusion: bool,
+ pub multi_query_attention: bool,
+ pub multi_query_group_num: usize,
+ pub apply_query_key_layer_scaling: bool,
+ pub attention_softmax_in_fp32: bool,
+ pub fp32_residual_connection: bool,
+}
+
+impl Config {
+ pub fn codegeex4() -> Self {
+ Self {
+ num_layers: 40,
+ padded_vocab_size: 151552,
+ hidden_size: 4096,
+ ffn_hidden_size: 13696,
+ kv_channels: 128,
+ num_attention_heads: 32,
+ seq_length: 131072,
+ layernorm_epsilon: 1e-5,
+ rmsnorm: true,
+ apply_residual_connection_post_layernorm: false,
+ post_layer_norm: true,
+ add_bias_linear: false,
+ add_qkv_bias: true,
+ bias_dropout_fusion: true,
+ multi_query_attention: true,
+ multi_query_group_num: 2,
+ apply_query_key_layer_scaling: true,
+ attention_softmax_in_fp32: true,
+ fp32_residual_connection: false,
+ }
+ }
+}
+
+#[derive(Debug, Clone)]
+struct RotaryEmbedding {
+ cache: Tensor,
+}
+
+impl RotaryEmbedding {
+ fn new(cfg: &Config, dtype: DType, dev: &Device) -> Result<Self> {
+ let rotary_dim = cfg.kv_channels;
+ let n_elem = rotary_dim / 2;
+ let inv_freq: Vec<_> = (0..n_elem)
+ .step_by(2)
+ .map(|i| 1f32 / 10_000f64.powf(i as f64 / n_elem as f64) as f32)
+ .collect();
+ let inv_freq_len = inv_freq.len();
+ let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
+ let t = Tensor::arange(0u32, cfg.seq_length as u32, dev)?
+ .to_dtype(dtype)
+ .expect("unalbe to dytpe in Rotray Embedding new")
+ .reshape((cfg.seq_length, 1))?;
+ let freqs = t.matmul(&inv_freq)?;
+ let cache = Tensor::stack(&[&freqs.cos()?, &freqs.sin()?], D::Minus1)?;
+ Ok(Self { cache })
+ }
+
+ fn apply(&self, xs: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
+ let (seqlen, _b, np, _hn) = xs.dims4()?;
+ let cache = self.cache.narrow(0, seqlen_offset, seqlen)?;
+ let rot_dim = cache.dim(D::Minus2)? * 2;
+ let (xs, xs_pass) = (
+ xs.narrow(D::Minus1, 0, rot_dim)?,
+ xs.narrow(D::Minus1, rot_dim, rot_dim)?,
+ );
+ let xshaped = xs.reshape((seqlen, (), np, rot_dim / 2, 2))?;
+ let cache = cache.reshape((seqlen, (), 1, rot_dim / 2, 2))?;
+ let (xshaped0, xshaped1) = (
+ xshaped.i((.., .., .., .., 0))?,
+ xshaped.i((.., .., .., .., 1))?,
+ );
+ let (cache0, cache1) = (cache.i((.., .., .., .., 0))?, cache.i((.., .., .., .., 1))?);
+ let xs_out = Tensor::stack(
+ &[
+ (xshaped0.broadcast_mul(&cache0)? - xshaped1.broadcast_mul(&cache1)?)?,
+ (xshaped1.broadcast_mul(&cache0)? + xshaped0.broadcast_mul(&cache1)?)?,
+ ],
+ D::Minus1,
+ )?;
+ let xs_out = xs_out.flatten_from(3)?;
+ Tensor::cat(&[xs_out, xs_pass], D::Minus1)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct CoreAttention {
+ coeff: Option<f64>,
+ norm_factor: f64,
+ dtype: DType,
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32, dtype: DType) -> Result<Tensor> {
+ let shape = mask.shape();
+ let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
+ let m = mask.where_cond(&on_true.to_dtype(dtype)?, on_false)?;
+ Ok(m)
+}
+
+impl CoreAttention {
+ fn new(layer_number: usize, cfg: &Config, dtype: DType) -> Result<Self> {
+ let norm_factor = (cfg.kv_channels as f64).sqrt();
+ let (norm_factor, coeff) = if cfg.apply_query_key_layer_scaling {
+ let coeff = f64::max(1.0, layer_number as f64);
+ (norm_factor * coeff, Some(coeff))
+ } else {
+ (norm_factor, None)
+ };
+ Ok(Self {
+ coeff,
+ norm_factor,
+ dtype,
+ })
+ }
+
+ fn forward(
+ &self,
+ query_layer: &Tensor,
+ key_layer: &Tensor,
+ value_layer: &Tensor,
+ attention_mask: &Option<Tensor>,
+ ) -> Result<Tensor> {
+ let output_size = (
+ query_layer.dim(1)?, // b
+ query_layer.dim(2)?, // np
+ query_layer.dim(0)?, // sq
+ key_layer.dim(0)?, // sk
+ );
+ let query_layer =
+ query_layer.reshape((output_size.2, output_size.0 * output_size.1, ()))?;
+ let key_layer = key_layer.reshape((output_size.3, output_size.0 * output_size.1, ()))?;
+ let matmul_result = Tensor::matmul(
+ &query_layer.transpose(0, 1)?.contiguous()?,
+ &key_layer.transpose(0, 1)?.transpose(1, 2)?.contiguous()?,
+ )?;
+ let matmul_result = (matmul_result / self.norm_factor)?.reshape(output_size)?;
+ let matmul_result = match self.coeff {
+ None => matmul_result,
+ Some(coeff) => (matmul_result * coeff)?,
+ };
+ let attention_scores = match attention_mask {
+ Some(mask) => masked_fill(
+ &matmul_result,
+ &mask.broadcast_left((matmul_result.dim(0)?, matmul_result.dim(1)?))?,
+ f32::NEG_INFINITY,
+ self.dtype,
+ )?,
+ None => matmul_result,
+ };
+ let attention_probs = candle_nn::ops::softmax_last_dim(&attention_scores)?;
+
+ let output_size = (
+ value_layer.dim(1)?,
+ value_layer.dim(2)?,
+ query_layer.dim(0)?,
+ value_layer.dim(3)?,
+ );
+ let value_layer =
+ value_layer.reshape((value_layer.dim(0)?, output_size.0 * output_size.1, ()))?;
+ let attention_probs =
+ attention_probs.reshape((output_size.0 * output_size.1, output_size.2, ()))?;
+ let context_layer = Tensor::matmul(
+ &attention_probs.contiguous()?,
+ &value_layer.transpose(0, 1)?.contiguous()?,
+ )?;
+ let context_layer = context_layer.reshape(output_size)?;
+ let context_layer = context_layer.permute((2, 0, 1, 3))?.contiguous()?;
+ context_layer.flatten_from(D::Minus2)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct SelfAttention {
+ query_key_value: Linear,
+ core_attention: CoreAttention,
+ dense: Linear,
+ multi_query_attention: bool,
+ num_attention_heads_per_partition: usize,
+ num_multi_query_groups_per_partition: usize,
+ hidden_size_per_attention_head: usize,
+ kv_cache: Option<(Tensor, Tensor)>,
+}
+
+impl SelfAttention {
+ fn new(layer_number: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let projection_size = cfg.kv_channels * cfg.num_attention_heads;
+ let hidden_size_per_attention_head = projection_size / cfg.num_attention_heads;
+ let qkv_hidden_size = if cfg.multi_query_attention {
+ projection_size + 2 * hidden_size_per_attention_head * cfg.multi_query_group_num
+ } else {
+ 3 * projection_size
+ };
+ let query_key_value = linear(
+ cfg.hidden_size,
+ qkv_hidden_size,
+ cfg.add_bias_linear || cfg.add_qkv_bias,
+ vb.pp("query_key_value"),
+ )?;
+ let core_attention = CoreAttention::new(layer_number, cfg, vb.dtype())?;
+ let dense = linear(
+ cfg.hidden_size,
+ cfg.hidden_size,
+ cfg.add_bias_linear,
+ vb.pp("dense"),
+ )?;
+ Ok(Self {
+ query_key_value,
+ core_attention,
+ dense,
+ multi_query_attention: cfg.multi_query_attention,
+ num_attention_heads_per_partition: cfg.num_attention_heads,
+ num_multi_query_groups_per_partition: cfg.multi_query_group_num,
+ hidden_size_per_attention_head: cfg.kv_channels,
+ kv_cache: None,
+ })
+ }
+
+ fn reset_kv_cache(&mut self) {
+ self.kv_cache = None
+ }
+
+ fn forward(
+ &mut self,
+ xs: &Tensor,
+ attention_mask: &Option<Tensor>,
+ rotary_emb: &RotaryEmbedding,
+ ) -> Result<Tensor> {
+ let mixed_x_layer = xs.apply(&self.query_key_value)?;
+ if !self.multi_query_attention {
+ candle::bail!("only multi_query_attention=true is supported")
+ }
+ let hpa = self.hidden_size_per_attention_head;
+ let query_layer =
+ mixed_x_layer.narrow(D::Minus1, 0, self.num_attention_heads_per_partition * hpa)?;
+ let key_layer = mixed_x_layer.narrow(
+ D::Minus1,
+ self.num_attention_heads_per_partition * hpa,
+ self.num_multi_query_groups_per_partition * hpa,
+ )?;
+ let value_layer = mixed_x_layer.narrow(
+ D::Minus1,
+ self.num_attention_heads_per_partition * hpa
+ + self.num_multi_query_groups_per_partition * hpa,
+ self.num_multi_query_groups_per_partition * hpa,
+ )?;
+ let query_layer = query_layer.reshape((
+ query_layer.dim(0)?,
+ query_layer.dim(1)?,
+ self.num_attention_heads_per_partition,
+ hpa,
+ ))?;
+ let key_layer = key_layer.reshape((
+ key_layer.dim(0)?,
+ key_layer.dim(1)?,
+ self.num_multi_query_groups_per_partition,
+ hpa,
+ ))?;
+ let value_layer = value_layer.reshape((
+ value_layer.dim(0)?,
+ value_layer.dim(1)?,
+ self.num_multi_query_groups_per_partition,
+ hpa,
+ ))?;
+
+ // Rotary embeddings.
+ let seqlen_offset = match &self.kv_cache {
+ None => 0,
+ Some((prev_k, _)) => prev_k.dim(0)?,
+ };
+ let query_layer = rotary_emb.apply(&query_layer, seqlen_offset)?;
+ let key_layer = rotary_emb.apply(&key_layer, seqlen_offset)?;
+
+ // KV cache.
+ let (key_layer, value_layer) = match &self.kv_cache {
+ None => (key_layer, value_layer),
+ Some((prev_k, prev_v)) => {
+ let k = Tensor::cat(&[prev_k, &key_layer], 0)?;
+ let v = Tensor::cat(&[prev_v, &value_layer], 0)?;
+ (k, v)
+ }
+ };
+ self.kv_cache = Some((key_layer.clone(), value_layer.clone()));
+
+ // Repeat KV.
+ let ratio =
+ self.num_attention_heads_per_partition / self.num_multi_query_groups_per_partition;
+ let key_layer = {
+ let (d0, d1, d2, d3) = key_layer.dims4()?;
+ key_layer
+ .unsqueeze(D::Minus2)?
+ .expand((d0, d1, d2, ratio, d3))?
+ .reshape((
+ d0,
+ d1,
+ self.num_attention_heads_per_partition,
+ self.hidden_size_per_attention_head,
+ ))?
+ };
+ let value_layer = {
+ let (d0, d1, d2, d3) = value_layer.dims4()?;
+ value_layer
+ .unsqueeze(D::Minus2)?
+ .expand((d0, d1, d2, ratio, d3))?
+ .reshape((
+ d0,
+ d1,
+ self.num_attention_heads_per_partition,
+ self.hidden_size_per_attention_head,
+ ))?
+ };
+
+ let context_layer =
+ self.core_attention
+ .forward(&query_layer, &key_layer, &value_layer, attention_mask)?;
+ let output = context_layer.apply(&self.dense)?;
+ Ok(output)
+ }
+}
+
+#[allow(clippy::upper_case_acronyms)]
+#[derive(Debug, Clone)]
+struct MLP {
+ dense_h_to_4h: Linear,
+ dense_4h_to_h: Linear,
+}
+
+impl MLP {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let dense_h_to_4h = linear(
+ cfg.hidden_size,
+ cfg.ffn_hidden_size * 2,
+ cfg.add_bias_linear,
+ vb.pp("dense_h_to_4h"),
+ )?;
+ let dense_4h_to_h = linear(
+ cfg.ffn_hidden_size,
+ cfg.hidden_size,
+ cfg.add_bias_linear,
+ vb.pp("dense_4h_to_h"),
+ )?;
+ Ok(Self {
+ dense_4h_to_h,
+ dense_h_to_4h,
+ })
+ }
+}
+
+impl Module for MLP {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ xs.apply(&self.dense_h_to_4h)?
+ .apply(&candle_nn::Activation::Swiglu)?
+ .apply(&self.dense_4h_to_h)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct Block {
+ input_layernorm: candle_nn::LayerNorm,
+ self_attention: SelfAttention,
+ post_attention_layernorm: candle_nn::LayerNorm,
+ mlp: MLP,
+ apply_residual_connection_post_layernorm: bool,
+}
+
+impl Block {
+ fn new(layer_number: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let input_layernorm = if cfg.rmsnorm {
+ candle_nn::rms_norm(
+ cfg.hidden_size,
+ cfg.layernorm_epsilon,
+ vb.pp("input_layernorm"),
+ )?
+ .into_inner()
+ } else {
+ candle_nn::layer_norm(
+ cfg.hidden_size,
+ cfg.layernorm_epsilon,
+ vb.pp("input_layernorm"),
+ )?
+ };
+ let post_attention_layernorm = if cfg.rmsnorm {
+ candle_nn::rms_norm(
+ cfg.hidden_size,
+ cfg.layernorm_epsilon,
+ vb.pp("post_attention_layernorm"),
+ )?
+ .into_inner()
+ } else {
+ candle_nn::layer_norm(
+ cfg.hidden_size,
+ cfg.layernorm_epsilon,
+ vb.pp("post_attention_layernorm"),
+ )?
+ };
+ let self_attention = SelfAttention::new(layer_number, cfg, vb.pp("self_attention"))?;
+ let mlp = MLP::new(cfg, vb.pp("mlp"))?;
+ Ok(Self {
+ input_layernorm,
+ self_attention,
+ post_attention_layernorm,
+ mlp,
+ apply_residual_connection_post_layernorm: cfg.apply_residual_connection_post_layernorm,
+ })
+ }
+
+ fn reset_kv_cache(&mut self) {
+ self.self_attention.reset_kv_cache()
+ }
+
+ fn forward(
+ &mut self,
+ xs: &Tensor,
+ attention_mask: &Option<Tensor>,
+ rotary_emb: &RotaryEmbedding,
+ ) -> Result<Tensor> {
+ let layernorm_output = xs.apply(&self.input_layernorm)?;
+ let attention_output =
+ self.self_attention
+ .forward(&layernorm_output, attention_mask, rotary_emb)?;
+ let residual = if self.apply_residual_connection_post_layernorm {
+ &layernorm_output
+ } else {
+ xs
+ };
+ let layernorm_input = (residual + attention_output)?;
+ let layernorm_output = layernorm_input.apply(&self.post_attention_layernorm)?;
+ let mlp_output = layernorm_output.apply(&self.mlp)?;
+ let residual = if self.apply_residual_connection_post_layernorm {
+ &layernorm_output
+ } else {
+ &layernorm_input
+ };
+ mlp_output + residual
+ }
+}
+
+#[derive(Debug, Clone)]
+struct Transformer {
+ layers: Vec<Block>,
+ final_layernorm: Option<candle_nn::LayerNorm>,
+ rotary_emb: RotaryEmbedding,
+}
+
+impl Transformer {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let vb_l = vb.pp("layers");
+ let mut layers = Vec::with_capacity(cfg.num_layers);
+ for layer_index in 0..cfg.num_layers {
+ let block = Block::new(layer_index + 1, cfg, vb_l.pp(layer_index))?;
+ layers.push(block)
+ }
+ let final_layernorm = if cfg.post_layer_norm {
+ let ln = if cfg.rmsnorm {
+ candle_nn::rms_norm(
+ cfg.hidden_size,
+ cfg.layernorm_epsilon,
+ vb.pp("final_layernorm"),
+ )?
+ .into_inner()
+ } else {
+ candle_nn::layer_norm(
+ cfg.hidden_size,
+ cfg.layernorm_epsilon,
+ vb.pp("final_layernorm"),
+ )?
+ };
+ Some(ln)
+ } else {
+ None
+ };
+ let rotary_emb = RotaryEmbedding::new(cfg, vb.dtype(), vb.device())?;
+ Ok(Self {
+ layers,
+ final_layernorm,
+ rotary_emb,
+ })
+ }
+
+ fn reset_kv_cache(&mut self) {
+ for block in self.layers.iter_mut() {
+ block.reset_kv_cache()
+ }
+ }
+
+ fn forward(&mut self, xs: &Tensor, attention_mask: &Option<Tensor>) -> Result<Tensor> {
+ let mut xs = xs.clone();
+ for block in self.layers.iter_mut() {
+ xs = block.forward(&xs, attention_mask, &self.rotary_emb)?
+ }
+ match self.final_layernorm.as_ref() {
+ None => Ok(xs),
+ Some(ln) => xs.apply(ln),
+ }
+ }
+}
+
+#[derive(Debug, Clone)]
+struct Embedding {
+ word_embeddings: candle_nn::Embedding,
+ fp32_residual_connection: bool,
+}
+
+impl Embedding {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let word_embeddings = candle_nn::embedding(
+ cfg.padded_vocab_size,
+ cfg.hidden_size,
+ vb.pp("word_embeddings"),
+ )?;
+ Ok(Self {
+ word_embeddings,
+ fp32_residual_connection: cfg.fp32_residual_connection,
+ })
+ }
+}
+
+impl Module for Embedding {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let xs = self.word_embeddings.forward(xs)?.transpose(0, 1)?; // b,s,h -> s,b,h
+ if self.fp32_residual_connection {
+ xs.to_dtype(candle::DType::F32)
+ } else {
+ xs.contiguous()
+ }
+ }
+}
+
+#[derive(Debug, Clone)]
+pub struct Model {
+ embedding: Embedding,
+ encoder: Transformer,
+ output_layer: Linear,
+}
+
+fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
+ let mask: Vec<_> = (0..size)
+ .flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
+ .collect();
+ Tensor::from_slice(&mask, (size, size), device)
+}
+
+impl Model {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let vb = vb.pp("transformer");
+ let embedding = Embedding::new(cfg, vb.pp("embedding"))?;
+ let encoder = Transformer::new(cfg, vb.pp("encoder"))?;
+ let output_layer = linear(
+ cfg.hidden_size,
+ cfg.padded_vocab_size,
+ false,
+ vb.pp("output_layer"),
+ )?;
+
+ Ok(Self {
+ embedding,
+ encoder,
+ output_layer,
+ })
+ }
+
+ pub fn reset_kv_cache(&mut self) {
+ self.encoder.reset_kv_cache()
+ }
+
+ pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
+ let (_b_size, seq_len) = xs.dims2()?;
+ let input_embeds = xs.apply(&self.embedding)?;
+ let attention_mask = if seq_len <= 1 {
+ None
+ } else {
+ Some(get_mask(seq_len, xs.device())?)
+ };
+ let xs = self.encoder.forward(&input_embeds, &attention_mask)?;
+ let lm_logits = xs.i(seq_len - 1)?.apply(&self.output_layer)?;
+ Ok(lm_logits)
+ }
+}
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index 7baa12e6..c1d48548 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -5,6 +5,7 @@ pub mod blip;
pub mod blip_text;
pub mod chatglm;
pub mod clip;
+pub mod codegeex4_9b;
pub mod convmixer;
pub mod convnext;
pub mod depth_anything_v2;