summaryrefslogtreecommitdiff
path: root/candle-transformers
diff options
context:
space:
mode:
authorEdwin Cheng <edwin0cheng@gmail.com>2023-12-03 15:37:10 +0800
committerGitHub <noreply@github.com>2023-12-03 08:37:10 +0100
commit37bf1ed012926b4180d2e9068b84118e1eb6e26d (patch)
tree73aa11818463fbe5bf39f4978dd6a5538a1a01a5 /candle-transformers
parentdd40edfe73b796ad12f6246319cde2e603c4dc56 (diff)
downloadcandle-37bf1ed012926b4180d2e9068b84118e1eb6e26d.tar.gz
candle-37bf1ed012926b4180d2e9068b84118e1eb6e26d.tar.bz2
candle-37bf1ed012926b4180d2e9068b84118e1eb6e26d.zip
Stable Diffusion Turbo Support (#1395)
* Add support for SD Turbo * Set Leading as default in euler_ancestral discrete * Use the appropriate default values for n_steps and guidance_scale. --------- Co-authored-by: Laurent <laurent.mazare@gmail.com>
Diffstat (limited to 'candle-transformers')
-rw-r--r--candle-transformers/src/models/stable_diffusion/ddim.rs40
-rw-r--r--candle-transformers/src/models/stable_diffusion/euler_ancestral_discrete.rs28
-rw-r--r--candle-transformers/src/models/stable_diffusion/mod.rs117
-rw-r--r--candle-transformers/src/models/stable_diffusion/schedulers.rs18
4 files changed, 168 insertions, 35 deletions
diff --git a/candle-transformers/src/models/stable_diffusion/ddim.rs b/candle-transformers/src/models/stable_diffusion/ddim.rs
index b9426094..d804ed56 100644
--- a/candle-transformers/src/models/stable_diffusion/ddim.rs
+++ b/candle-transformers/src/models/stable_diffusion/ddim.rs
@@ -7,7 +7,9 @@
//!
//! Denoising Diffusion Implicit Models, J. Song et al, 2020.
//! https://arxiv.org/abs/2010.02502
-use super::schedulers::{betas_for_alpha_bar, BetaSchedule, PredictionType, TimestepSpacing};
+use super::schedulers::{
+ betas_for_alpha_bar, BetaSchedule, PredictionType, Scheduler, SchedulerConfig, TimestepSpacing,
+};
use candle::{Result, Tensor};
/// The configuration for the DDIM scheduler.
@@ -48,6 +50,12 @@ impl Default for DDIMSchedulerConfig {
}
}
+impl SchedulerConfig for DDIMSchedulerConfig {
+ fn build(&self, inference_steps: usize) -> Result<Box<dyn Scheduler>> {
+ Ok(Box::new(DDIMScheduler::new(inference_steps, *self)?))
+ }
+}
+
/// The DDIM scheduler.
#[derive(Debug, Clone)]
pub struct DDIMScheduler {
@@ -63,7 +71,7 @@ impl DDIMScheduler {
/// Creates a new DDIM scheduler given the number of steps to be
/// used for inference as well as the number of steps that was used
/// during training.
- pub fn new(inference_steps: usize, config: DDIMSchedulerConfig) -> Result<Self> {
+ fn new(inference_steps: usize, config: DDIMSchedulerConfig) -> Result<Self> {
let step_ratio = config.train_timesteps / inference_steps;
let timesteps: Vec<usize> = match config.timestep_spacing {
TimestepSpacing::Leading => (0..(inference_steps))
@@ -115,19 +123,11 @@ impl DDIMScheduler {
config,
})
}
+}
- pub fn timesteps(&self) -> &[usize] {
- self.timesteps.as_slice()
- }
-
- /// Ensures interchangeability with schedulers that need to scale the denoising model input
- /// depending on the current timestep.
- pub fn scale_model_input(&self, sample: Tensor, _timestep: usize) -> Result<Tensor> {
- Ok(sample)
- }
-
+impl Scheduler for DDIMScheduler {
/// Performs a backward step during inference.
- pub fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> {
+ fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> {
let timestep = if timestep >= self.alphas_cumprod.len() {
timestep - 1
} else {
@@ -186,7 +186,17 @@ impl DDIMScheduler {
}
}
- pub fn add_noise(&self, original: &Tensor, noise: Tensor, timestep: usize) -> Result<Tensor> {
+ /// Ensures interchangeability with schedulers that need to scale the denoising model input
+ /// depending on the current timestep.
+ fn scale_model_input(&self, sample: Tensor, _timestep: usize) -> Result<Tensor> {
+ Ok(sample)
+ }
+
+ fn timesteps(&self) -> &[usize] {
+ self.timesteps.as_slice()
+ }
+
+ fn add_noise(&self, original: &Tensor, noise: Tensor, timestep: usize) -> Result<Tensor> {
let timestep = if timestep >= self.alphas_cumprod.len() {
timestep - 1
} else {
@@ -197,7 +207,7 @@ impl DDIMScheduler {
(original * sqrt_alpha_prod)? + (noise * sqrt_one_minus_alpha_prod)?
}
- pub fn init_noise_sigma(&self) -> f64 {
+ fn init_noise_sigma(&self) -> f64 {
self.init_noise_sigma
}
}
diff --git a/candle-transformers/src/models/stable_diffusion/euler_ancestral_discrete.rs b/candle-transformers/src/models/stable_diffusion/euler_ancestral_discrete.rs
index 7acbf040..85e86e6e 100644
--- a/candle-transformers/src/models/stable_diffusion/euler_ancestral_discrete.rs
+++ b/candle-transformers/src/models/stable_diffusion/euler_ancestral_discrete.rs
@@ -8,7 +8,10 @@
///
/// [kd]: https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72
use super::{
- schedulers::{betas_for_alpha_bar, BetaSchedule, PredictionType, TimestepSpacing},
+ schedulers::{
+ betas_for_alpha_bar, BetaSchedule, PredictionType, Scheduler, SchedulerConfig,
+ TimestepSpacing,
+ },
utils::interp,
};
use candle::{bail, Error, Result, Tensor};
@@ -43,11 +46,20 @@ impl Default for EulerAncestralDiscreteSchedulerConfig {
steps_offset: 1,
prediction_type: PredictionType::Epsilon,
train_timesteps: 1000,
- timestep_spacing: TimestepSpacing::Trailing,
+ timestep_spacing: TimestepSpacing::Leading,
}
}
}
+impl SchedulerConfig for EulerAncestralDiscreteSchedulerConfig {
+ fn build(&self, inference_steps: usize) -> Result<Box<dyn Scheduler>> {
+ Ok(Box::new(EulerAncestralDiscreteScheduler::new(
+ inference_steps,
+ *self,
+ )?))
+ }
+}
+
/// The EulerAncestral Discrete scheduler.
#[derive(Debug, Clone)]
pub struct EulerAncestralDiscreteScheduler {
@@ -138,8 +150,10 @@ impl EulerAncestralDiscreteScheduler {
config,
})
}
+}
- pub fn timesteps(&self) -> &[usize] {
+impl Scheduler for EulerAncestralDiscreteScheduler {
+ fn timesteps(&self) -> &[usize] {
self.timesteps.as_slice()
}
@@ -147,7 +161,7 @@ impl EulerAncestralDiscreteScheduler {
/// depending on the current timestep.
///
/// Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm
- pub fn scale_model_input(&self, sample: Tensor, timestep: usize) -> Result<Tensor> {
+ fn scale_model_input(&self, sample: Tensor, timestep: usize) -> Result<Tensor> {
let step_index = match self.timesteps.iter().position(|&t| t == timestep) {
Some(i) => i,
None => bail!("timestep out of this schedulers bounds: {timestep}"),
@@ -162,7 +176,7 @@ impl EulerAncestralDiscreteScheduler {
}
/// Performs a backward step during inference.
- pub fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> {
+ fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> {
let step_index = self
.timesteps
.iter()
@@ -197,7 +211,7 @@ impl EulerAncestralDiscreteScheduler {
prev_sample + noise * sigma_up
}
- pub fn add_noise(&self, original: &Tensor, noise: Tensor, timestep: usize) -> Result<Tensor> {
+ fn add_noise(&self, original: &Tensor, noise: Tensor, timestep: usize) -> Result<Tensor> {
let step_index = self
.timesteps
.iter()
@@ -212,7 +226,7 @@ impl EulerAncestralDiscreteScheduler {
original + (noise * *sigma)?
}
- pub fn init_noise_sigma(&self) -> f64 {
+ fn init_noise_sigma(&self) -> f64 {
match self.config.timestep_spacing {
TimestepSpacing::Trailing | TimestepSpacing::Linspace => self.init_noise_sigma,
TimestepSpacing::Leading => (self.init_noise_sigma.powi(2) + 1.0).sqrt(),
diff --git a/candle-transformers/src/models/stable_diffusion/mod.rs b/candle-transformers/src/models/stable_diffusion/mod.rs
index cad24524..30f23975 100644
--- a/candle-transformers/src/models/stable_diffusion/mod.rs
+++ b/candle-transformers/src/models/stable_diffusion/mod.rs
@@ -11,9 +11,13 @@ pub mod unet_2d_blocks;
pub mod utils;
pub mod vae;
+use std::sync::Arc;
+
use candle::{DType, Device, Result};
use candle_nn as nn;
+use self::schedulers::{Scheduler, SchedulerConfig};
+
#[derive(Clone, Debug)]
pub struct StableDiffusionConfig {
pub width: usize,
@@ -22,7 +26,7 @@ pub struct StableDiffusionConfig {
pub clip2: Option<clip::Config>,
autoencoder: vae::AutoEncoderKLConfig,
unet: unet_2d::UNet2DConditionModelConfig,
- scheduler: ddim::DDIMSchedulerConfig,
+ scheduler: Arc<dyn SchedulerConfig>,
}
impl StableDiffusionConfig {
@@ -76,13 +80,18 @@ impl StableDiffusionConfig {
512
};
- Self {
+ let scheduler = Arc::new(ddim::DDIMSchedulerConfig {
+ prediction_type: schedulers::PredictionType::Epsilon,
+ ..Default::default()
+ });
+
+ StableDiffusionConfig {
width,
height,
clip: clip::Config::v1_5(),
clip2: None,
autoencoder,
- scheduler: Default::default(),
+ scheduler,
unet,
}
}
@@ -125,10 +134,10 @@ impl StableDiffusionConfig {
latent_channels: 4,
norm_num_groups: 32,
};
- let scheduler = ddim::DDIMSchedulerConfig {
+ let scheduler = Arc::new(ddim::DDIMSchedulerConfig {
prediction_type,
..Default::default()
- };
+ });
let height = if let Some(height) = height {
assert_eq!(height % 8, 0, "height has to be divisible by 8");
@@ -144,7 +153,7 @@ impl StableDiffusionConfig {
768
};
- Self {
+ StableDiffusionConfig {
width,
height,
clip: clip::Config::v2_1(),
@@ -206,10 +215,10 @@ impl StableDiffusionConfig {
latent_channels: 4,
norm_num_groups: 32,
};
- let scheduler = ddim::DDIMSchedulerConfig {
+ let scheduler = Arc::new(ddim::DDIMSchedulerConfig {
prediction_type,
..Default::default()
- };
+ });
let height = if let Some(height) = height {
assert_eq!(height % 8, 0, "height has to be divisible by 8");
@@ -225,6 +234,76 @@ impl StableDiffusionConfig {
1024
};
+ StableDiffusionConfig {
+ width,
+ height,
+ clip: clip::Config::sdxl(),
+ clip2: Some(clip::Config::sdxl2()),
+ autoencoder,
+ scheduler,
+ unet,
+ }
+ }
+
+ fn sdxl_turbo_(
+ sliced_attention_size: Option<usize>,
+ height: Option<usize>,
+ width: Option<usize>,
+ prediction_type: schedulers::PredictionType,
+ ) -> Self {
+ let bc = |out_channels, use_cross_attn, attention_head_dim| unet_2d::BlockConfig {
+ out_channels,
+ use_cross_attn,
+ attention_head_dim,
+ };
+ // https://huggingface.co/stabilityai/sdxl-turbo/blob/main/unet/config.json
+ let unet = unet_2d::UNet2DConditionModelConfig {
+ blocks: vec![
+ bc(320, None, 5),
+ bc(640, Some(2), 10),
+ bc(1280, Some(10), 20),
+ ],
+ center_input_sample: false,
+ cross_attention_dim: 2048,
+ downsample_padding: 1,
+ flip_sin_to_cos: true,
+ freq_shift: 0.,
+ layers_per_block: 2,
+ mid_block_scale_factor: 1.,
+ norm_eps: 1e-5,
+ norm_num_groups: 32,
+ sliced_attention_size,
+ use_linear_projection: true,
+ };
+ // https://huggingface.co/stabilityai/sdxl-turbo/blob/main/vae/config.json
+ let autoencoder = vae::AutoEncoderKLConfig {
+ block_out_channels: vec![128, 256, 512, 512],
+ layers_per_block: 2,
+ latent_channels: 4,
+ norm_num_groups: 32,
+ };
+ let scheduler = Arc::new(
+ euler_ancestral_discrete::EulerAncestralDiscreteSchedulerConfig {
+ prediction_type,
+ timestep_spacing: schedulers::TimestepSpacing::Trailing,
+ ..Default::default()
+ },
+ );
+
+ let height = if let Some(height) = height {
+ assert_eq!(height % 8, 0, "height has to be divisible by 8");
+ height
+ } else {
+ 512
+ };
+
+ let width = if let Some(width) = width {
+ assert_eq!(width % 8, 0, "width has to be divisible by 8");
+ width
+ } else {
+ 512
+ };
+
Self {
width,
height,
@@ -250,6 +329,20 @@ impl StableDiffusionConfig {
)
}
+ pub fn sdxl_turbo(
+ sliced_attention_size: Option<usize>,
+ height: Option<usize>,
+ width: Option<usize>,
+ ) -> Self {
+ Self::sdxl_turbo_(
+ sliced_attention_size,
+ height,
+ width,
+ // https://huggingface.co/stabilityai/sdxl-turbo/blob/main/scheduler/scheduler_config.json
+ schedulers::PredictionType::Epsilon,
+ )
+ }
+
pub fn ssd1b(
sliced_attention_size: Option<usize>,
height: Option<usize>,
@@ -286,9 +379,9 @@ impl StableDiffusionConfig {
latent_channels: 4,
norm_num_groups: 32,
};
- let scheduler = ddim::DDIMSchedulerConfig {
+ let scheduler = Arc::new(ddim::DDIMSchedulerConfig {
..Default::default()
- };
+ });
let height = if let Some(height) = height {
assert_eq!(height % 8, 0, "height has to be divisible by 8");
@@ -348,8 +441,8 @@ impl StableDiffusionConfig {
Ok(unet)
}
- pub fn build_scheduler(&self, n_steps: usize) -> Result<ddim::DDIMScheduler> {
- ddim::DDIMScheduler::new(n_steps, self.scheduler)
+ pub fn build_scheduler(&self, n_steps: usize) -> Result<Box<dyn Scheduler>> {
+ self.scheduler.build(n_steps)
}
}
diff --git a/candle-transformers/src/models/stable_diffusion/schedulers.rs b/candle-transformers/src/models/stable_diffusion/schedulers.rs
index f414bde7..0f0441e0 100644
--- a/candle-transformers/src/models/stable_diffusion/schedulers.rs
+++ b/candle-transformers/src/models/stable_diffusion/schedulers.rs
@@ -3,9 +3,25 @@
//!
//! Noise schedulers can be used to set the trade-off between
//! inference speed and quality.
-
use candle::{Result, Tensor};
+pub trait SchedulerConfig: std::fmt::Debug {
+ fn build(&self, inference_steps: usize) -> Result<Box<dyn Scheduler>>;
+}
+
+/// This trait represents a scheduler for the diffusion process.
+pub trait Scheduler {
+ fn timesteps(&self) -> &[usize];
+
+ fn add_noise(&self, original: &Tensor, noise: Tensor, timestep: usize) -> Result<Tensor>;
+
+ fn init_noise_sigma(&self) -> f64;
+
+ fn scale_model_input(&self, sample: Tensor, _timestep: usize) -> Result<Tensor>;
+
+ fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor>;
+}
+
/// This represents how beta ranges from its minimum value to the maximum
/// during training.
#[derive(Debug, Clone, Copy)]