diff options
author | Isotr0py <41363108+Isotr0py@users.noreply.github.com> | 2024-04-26 17:02:51 +0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-04-26 11:02:51 +0200 |
commit | 6cf82fd7a34641601264ad1e0256ecadb7222474 (patch) | |
tree | 3a7cd0de4a16baed880793b426ad7b5b2f76d7fd /candle-transformers | |
parent | cfab6e761696c18b1ce5d3a339ab57ef191ca749 (diff) | |
download | candle-6cf82fd7a34641601264ad1e0256ecadb7222474.tar.gz candle-6cf82fd7a34641601264ad1e0256ecadb7222474.tar.bz2 candle-6cf82fd7a34641601264ad1e0256ecadb7222474.zip |
Add Olmo models (#2127)
* add olmo support
* add olmo readme
* Fix fmt.
* Fix clippy.
* Get olmo to work on cuda.
---------
Co-authored-by: laurent <laurent.mazare@gmail.com>
Diffstat (limited to 'candle-transformers')
-rw-r--r-- | candle-transformers/src/models/mod.rs | 1 | ||||
-rw-r--r-- | candle-transformers/src/models/olmo.rs | 337 |
2 files changed, 338 insertions, 0 deletions
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs index 19c16696..02f84158 100644 --- a/candle-transformers/src/models/mod.rs +++ b/candle-transformers/src/models/mod.rs @@ -26,6 +26,7 @@ pub mod mixtral; pub mod mobileone; pub mod moondream; pub mod mpt; +pub mod olmo; pub mod persimmon; pub mod phi; pub mod phi3; diff --git a/candle-transformers/src/models/olmo.rs b/candle-transformers/src/models/olmo.rs new file mode 100644 index 00000000..983a3334 --- /dev/null +++ b/candle-transformers/src/models/olmo.rs @@ -0,0 +1,337 @@ +use candle::{DType, Device, Module, Result, Tensor, D}; +use candle_nn::{linear_b, linear_no_bias, Activation, LayerNorm, Linear, VarBuilder}; +use std::sync::Arc; + +#[derive(Debug, Clone, serde::Deserialize)] +pub struct Config { + pub vocab_size: usize, + pub hidden_size: usize, + pub intermediate_size: usize, + pub attention_bias: bool, + pub num_hidden_layers: usize, + pub num_attention_heads: usize, + pub num_key_value_heads: usize, + pub hidden_act: candle_nn::Activation, + pub max_position_embeddings: usize, + pub rope_theta: f64, + pub tie_word_embeddings: bool, + pub clip_qkv: Option<f64>, +} + +#[derive(Debug, Clone)] +struct RotaryEmbedding { + sin: Tensor, + cos: Tensor, +} + +impl RotaryEmbedding { + fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> { + let dim = cfg.hidden_size / cfg.num_attention_heads; + let max_seq_len = cfg.max_position_embeddings; + let inv_freq: Vec<_> = (0..dim) + .step_by(2) + .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32) + .collect(); + let inv_freq_len = inv_freq.len(); + let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?; + let t = Tensor::arange(0u32, max_seq_len as u32, dev)? + .to_dtype(dtype)? + .reshape((max_seq_len, 1))?; + let freqs = t.matmul(&inv_freq)?; + Ok(Self { + sin: freqs.sin()?, + cos: freqs.cos()?, + }) + } + + fn apply_rotary_emb_qkv( + &self, + q: &Tensor, + k: &Tensor, + seqlen_offset: usize, + ) -> Result<(Tensor, Tensor)> { + let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?; + let cos = self.cos.narrow(0, seqlen_offset, seq_len)?; + let sin = self.sin.narrow(0, seqlen_offset, seq_len)?; + let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?; + let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?; + Ok((q_embed, k_embed)) + } +} + +#[derive(Debug, Clone)] +#[allow(clippy::upper_case_acronyms)] +struct MLP { + gate_proj: Linear, + up_proj: Linear, + down_proj: Linear, + act_fn: Activation, +} + +impl MLP { + fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { + let hidden_sz = cfg.hidden_size; + let intermediate_sz = cfg.intermediate_size; + let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?; + let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?; + let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?; + Ok(Self { + gate_proj, + up_proj, + down_proj, + act_fn: cfg.hidden_act, + }) + } +} + +impl Module for MLP { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?; + let rhs = xs.apply(&self.up_proj)?; + (lhs * rhs)?.apply(&self.down_proj) + } +} + +#[derive(Debug, Clone)] +struct Attention { + q_proj: Linear, + k_proj: Linear, + v_proj: Linear, + o_proj: Linear, + num_heads: usize, + num_kv_heads: usize, + num_kv_groups: usize, + head_dim: usize, + hidden_size: usize, + rotary_emb: Arc<RotaryEmbedding>, + qkv_clip: Option<f64>, + kv_cache: Option<(Tensor, Tensor)>, +} + +impl Attention { + fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> { + let hidden_sz = cfg.hidden_size; + let num_heads = cfg.num_attention_heads; + let num_kv_heads = cfg.num_key_value_heads; + let num_kv_groups = num_heads / num_kv_heads; + let head_dim = hidden_sz / num_heads; + let b = cfg.attention_bias; + let qkv_clip = cfg.clip_qkv; + let q_proj = linear_b(hidden_sz, num_heads * head_dim, b, vb.pp("q_proj"))?; + let k_proj = linear_b(hidden_sz, num_kv_heads * head_dim, b, vb.pp("k_proj"))?; + let v_proj = linear_b(hidden_sz, num_kv_heads * head_dim, b, vb.pp("v_proj"))?; + let o_proj = linear_b(num_heads * head_dim, hidden_sz, b, vb.pp("o_proj"))?; + Ok(Self { + q_proj, + k_proj, + v_proj, + o_proj, + num_heads, + num_kv_heads, + num_kv_groups, + head_dim, + hidden_size: hidden_sz, + rotary_emb, + qkv_clip, + kv_cache: None, + }) + } + + fn forward( + &mut self, + xs: &Tensor, + attention_mask: Option<&Tensor>, + seqlen_offset: usize, + ) -> Result<Tensor> { + let (b_sz, q_len, _) = xs.dims3()?; + + let query_states = self.q_proj.forward(xs)?; + let key_states = self.k_proj.forward(xs)?; + let value_states = self.v_proj.forward(xs)?; + + let (query_states, key_states, value_states) = match &self.qkv_clip { + None => (query_states, key_states, value_states), + Some(qkv_clip) => { + let query_states = Tensor::clamp(&query_states, -qkv_clip, *qkv_clip)?; + let key_states = Tensor::clamp(&key_states, -qkv_clip, *qkv_clip)?; + let value_states = Tensor::clamp(&value_states, -qkv_clip, *qkv_clip)?; + (query_states, key_states, value_states) + } + }; + + let query_states = query_states + .reshape((b_sz, q_len, self.num_heads, self.head_dim))? + .transpose(1, 2)?; + let key_states = key_states + .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? + .transpose(1, 2)?; + let value_states = value_states + .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? + .transpose(1, 2)?; + + let (query_states, key_states) = + self.rotary_emb + .apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?; + + let (key_states, value_states) = match &self.kv_cache { + None => (key_states, value_states), + Some((prev_k, prev_v)) => { + let key_states = Tensor::cat(&[prev_k, &key_states], 2)?; + let value_states = Tensor::cat(&[prev_v, &value_states], 2)?; + (key_states, value_states) + } + }; + self.kv_cache = Some((key_states.clone(), value_states.clone())); + + let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?; + let value_states = + crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?; + + let attn_output = { + let scale = 1f64 / f64::sqrt(self.head_dim as f64); + let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?; + + let attn_weights = match attention_mask { + None => attn_weights, + Some(mask) => attn_weights.broadcast_add(mask)?, + }; + let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?; + attn_weights.matmul(&value_states)? + }; + attn_output + .transpose(1, 2)? + .reshape((b_sz, q_len, self.hidden_size))? + .apply(&self.o_proj) + } + + fn clear_kv_cache(&mut self) { + self.kv_cache = None + } +} + +#[derive(Debug, Clone)] +struct DecoderLayer { + self_attn: Attention, + mlp: MLP, + input_layernorm: LayerNorm, + post_attention_layernorm: LayerNorm, +} + +impl DecoderLayer { + fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> { + let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?; + let mlp = MLP::new(cfg, vb.pp("mlp"))?; + let ln_weight = Tensor::ones(cfg.hidden_size, vb.dtype(), vb.device())?; + let input_layernorm = LayerNorm::new_no_bias(ln_weight.clone(), 1e-5); + let post_attention_layernorm = LayerNorm::new_no_bias(ln_weight.clone(), 1e-5); + Ok(Self { + self_attn, + mlp, + input_layernorm, + post_attention_layernorm, + }) + } + + fn forward( + &mut self, + xs: &Tensor, + attention_mask: Option<&Tensor>, + seqlen_offset: usize, + ) -> Result<Tensor> { + let residual = xs; + let xs = self.input_layernorm.forward(xs)?; + let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?; + let xs = (xs + residual)?; + let residual = &xs; + let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?; + residual + xs + } + + fn clear_kv_cache(&mut self) { + self.self_attn.clear_kv_cache() + } +} + +#[derive(Debug, Clone)] +pub struct Model { + embed_tokens: candle_nn::Embedding, + layers: Vec<DecoderLayer>, + norm: LayerNorm, + lm_head: Linear, + device: Device, + dtype: DType, +} + +impl Model { + pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { + let vb_m = vb.pp("model"); + let embed_tokens = + candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?; + let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?); + let mut layers = Vec::with_capacity(cfg.num_hidden_layers); + let vb_l = vb_m.pp("layers"); + for layer_idx in 0..cfg.num_hidden_layers { + let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?; + layers.push(layer) + } + let ln_weight = Tensor::ones(cfg.hidden_size, vb.dtype(), vb.device())?; + let norm = LayerNorm::new_no_bias(ln_weight, 1e-5); + let lm_head = if cfg.tie_word_embeddings { + Linear::new(embed_tokens.embeddings().clone(), None) + } else { + linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))? + }; + Ok(Self { + embed_tokens, + layers, + norm, + lm_head, + device: vb.device().clone(), + dtype: vb.dtype(), + }) + } + + fn prepare_decoder_attention_mask( + &self, + b_size: usize, + tgt_len: usize, + seqlen_offset: usize, + ) -> Result<Tensor> { + // Sliding window mask? + let mask: Vec<_> = (0..tgt_len) + .flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. })) + .collect(); + let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?; + let mask = if seqlen_offset > 0 { + let mask0 = Tensor::zeros((tgt_len, seqlen_offset), self.dtype, &self.device)?; + Tensor::cat(&[&mask0, &mask], D::Minus1)? + } else { + mask + }; + mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))? + .to_dtype(self.dtype) + } + + pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> { + let (b_size, seq_len) = input_ids.dims2()?; + let attention_mask = if seq_len <= 1 { + None + } else { + let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?; + Some(mask) + }; + let mut xs = self.embed_tokens.forward(input_ids)?; + for layer in self.layers.iter_mut() { + xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)? + } + xs.narrow(1, seq_len - 1, 1)? + .apply(&self.norm)? + .apply(&self.lm_head) + } + + pub fn clear_kv_cache(&mut self) { + for layer in self.layers.iter_mut() { + layer.clear_kv_cache() + } + } +} |