summaryrefslogtreecommitdiff
path: root/candle-transformers
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2024-05-18 19:18:59 +0200
committerGitHub <noreply@github.com>2024-05-18 19:18:59 +0200
commit7ebc3548e19fb8d40940fa2315b3f817058e7e96 (patch)
treee8097869ef0b6f8db1a9091ef2f7df078e013cc7 /candle-transformers
parenteefc1c77ef00b74e1f8c6ac4e217dfbdbd419eff (diff)
downloadcandle-7ebc3548e19fb8d40940fa2315b3f817058e7e96.tar.gz
candle-7ebc3548e19fb8d40940fa2315b3f817058e7e96.tar.bz2
candle-7ebc3548e19fb8d40940fa2315b3f817058e7e96.zip
Use flash-attn in gemma. (#2195)
* Use flash-attn in gemma. * Fix flash-attn for head dim 256.
Diffstat (limited to 'candle-transformers')
-rw-r--r--candle-transformers/src/models/gemma.rs62
1 files changed, 44 insertions, 18 deletions
diff --git a/candle-transformers/src/models/gemma.rs b/candle-transformers/src/models/gemma.rs
index 3bde88b4..1cfef59e 100644
--- a/candle-transformers/src/models/gemma.rs
+++ b/candle-transformers/src/models/gemma.rs
@@ -73,13 +73,6 @@ struct RotaryEmbedding {
cos: Tensor,
}
-fn rotate_half(xs: &Tensor) -> Result<Tensor> {
- let last_dim = xs.dim(D::Minus1)?;
- let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?;
- let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?;
- Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)
-}
-
impl RotaryEmbedding {
fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
let dim = cfg.head_dim;
@@ -94,7 +87,6 @@ impl RotaryEmbedding {
.to_dtype(dtype)?
.reshape((max_seq_len, 1))?;
let freqs = t.matmul(&inv_freq)?;
- let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
Ok(Self {
sin: freqs.sin()?,
cos: freqs.cos()?,
@@ -110,10 +102,8 @@ impl RotaryEmbedding {
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
- let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
- let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
- let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?;
- let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?;
+ let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
+ let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
Ok((q_embed, k_embed))
}
}
@@ -163,10 +153,16 @@ struct Attention {
head_dim: usize,
rotary_emb: Arc<RotaryEmbedding>,
kv_cache: Option<(Tensor, Tensor)>,
+ use_flash_attn: bool,
}
impl Attention {
- fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ fn new(
+ rotary_emb: Arc<RotaryEmbedding>,
+ use_flash_attn: bool,
+ cfg: &Config,
+ vb: VarBuilder,
+ ) -> Result<Self> {
let hidden_sz = cfg.hidden_size;
let num_heads = cfg.num_attention_heads;
let num_kv_heads = cfg.num_key_value_heads;
@@ -188,6 +184,7 @@ impl Attention {
head_dim,
rotary_emb,
kv_cache: None,
+ use_flash_attn,
})
}
@@ -231,7 +228,14 @@ impl Attention {
let value_states =
crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
- let attn_output = {
+ let attn_output = if self.use_flash_attn {
+ // flash-attn expects (b_sz, seq_len, nheads, head_dim)
+ let q = query_states.transpose(1, 2)?;
+ let k = key_states.transpose(1, 2)?;
+ let v = value_states.transpose(1, 2)?;
+ let scale = 1f32 / (self.head_dim as f32).sqrt();
+ flash_attn(&q, &k, &v, scale, attention_mask.is_some())?.transpose(1, 2)?
+ } else {
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
@@ -253,6 +257,22 @@ impl Attention {
}
}
+#[cfg(feature = "flash-attn")]
+fn flash_attn(
+ q: &Tensor,
+ k: &Tensor,
+ v: &Tensor,
+ softmax_scale: f32,
+ causal: bool,
+) -> Result<Tensor> {
+ candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
+}
+
+#[cfg(not(feature = "flash-attn"))]
+fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
+ unimplemented!("compile with '--features flash-attn'")
+}
+
#[derive(Debug, Clone)]
struct DecoderLayer {
self_attn: Attention,
@@ -262,8 +282,13 @@ struct DecoderLayer {
}
impl DecoderLayer {
- fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
- let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
+ fn new(
+ rotary_emb: Arc<RotaryEmbedding>,
+ use_flash_attn: bool,
+ cfg: &Config,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let self_attn = Attention::new(rotary_emb, use_flash_attn, cfg, vb.pp("self_attn"))?;
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
let input_layernorm =
RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
@@ -312,7 +337,7 @@ pub struct Model {
}
impl Model {
- pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ pub fn new(use_flash_attn: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb_m = vb.pp("model");
let embed_tokens =
candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
@@ -320,7 +345,8 @@ impl Model {
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
let vb_l = vb_m.pp("layers");
for layer_idx in 0..cfg.num_hidden_layers {
- let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
+ let layer =
+ DecoderLayer::new(rotary_emb.clone(), use_flash_attn, cfg, vb_l.pp(layer_idx))?;
layers.push(layer)
}
let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;