summaryrefslogtreecommitdiff
path: root/candle-transformers
diff options
context:
space:
mode:
authorv-espitalier <125037408+v-espitalier@users.noreply.github.com>2024-07-07 20:09:31 +0200
committerGitHub <noreply@github.com>2024-07-07 20:09:31 +0200
commit9cd54aa5d4fb6cf30e0df2d198c8a387db2d9144 (patch)
tree9988e786128416cf8c77425658e29a67c904a5ad /candle-transformers
parenteec11ce2ce1e81f0fdb1cac5405d07286242dc01 (diff)
downloadcandle-9cd54aa5d4fb6cf30e0df2d198c8a387db2d9144.tar.gz
candle-9cd54aa5d4fb6cf30e0df2d198c8a387db2d9144.tar.bz2
candle-9cd54aa5d4fb6cf30e0df2d198c8a387db2d9144.zip
Add EVA-02 model ( https://arxiv.org/abs/2303.11331 ) (#2311)
* Add EVA-02 model ( https://arxiv.org/abs/2303.11331 ) * Clippy fix. * And apply fmt. --------- Co-authored-by: v-espitalier <> Co-authored-by: Laurent <laurent.mazare@gmail.com>
Diffstat (limited to 'candle-transformers')
-rw-r--r--candle-transformers/src/models/eva2.rs418
-rw-r--r--candle-transformers/src/models/mod.rs1
2 files changed, 419 insertions, 0 deletions
diff --git a/candle-transformers/src/models/eva2.rs b/candle-transformers/src/models/eva2.rs
new file mode 100644
index 00000000..eb2df4cd
--- /dev/null
+++ b/candle-transformers/src/models/eva2.rs
@@ -0,0 +1,418 @@
+use candle::{IndexOp, Result, Tensor, D};
+use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
+
+const IMG_SIZE: usize = 448;
+const PATCH_SIZE: usize = 14;
+const NUM_CLASSES: usize = 1000;
+
+fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> {
+ if bias {
+ candle_nn::linear(in_dim, out_dim, vb)
+ } else {
+ candle_nn::linear_no_bias(in_dim, out_dim, vb)
+ }
+}
+
+#[derive(Debug)]
+struct Attention {
+ q: Linear,
+ k: Linear,
+ v: Linear,
+ proj: Linear,
+ rot_pos_embed: Tensor,
+ num_heads: usize,
+ scale: f64,
+}
+
+impl Attention {
+ fn new(
+ vb: VarBuilder,
+ dim: usize,
+ num_heads: usize,
+ qkv_bias: bool,
+ proj_bias: bool,
+ rot_pos_embed: &Tensor,
+ ) -> Result<Self> {
+ let q = linear(vb.pp("q_proj"), dim, dim, qkv_bias)?;
+ let k = linear(vb.pp("k_proj"), dim, dim, false)?; // no bias for Key
+ let v = linear(vb.pp("v_proj"), dim, dim, qkv_bias)?;
+ let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?;
+ let rot_pos_embed = rot_pos_embed.clone();
+ let scale = 1. / ((dim / num_heads) as f64).sqrt();
+ Ok(Self {
+ q,
+ k,
+ v,
+ proj,
+ rot_pos_embed,
+ num_heads,
+ scale,
+ })
+ }
+}
+
+impl Attention {
+ // See: https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/pos_embed_sincos.py#L210
+ fn apply_rot_embed_cat(x: &Tensor, emb: &Tensor) -> Result<Tensor> {
+ let cos_emb = emb.i((0.., 64..128))?; //.transpose(0, 1)?;
+ let sin_emb = emb.i((0.., 0..64))?; //.transpose(0, 1)?;
+ let index_even: [u32; 32] = (0u32..=63)
+ .step_by(2)
+ .collect::<Vec<_>>()
+ .try_into()
+ .expect("wrong size iterator");
+ let index_odd: [u32; 32] = (1u32..=63)
+ .step_by(2)
+ .collect::<Vec<_>>()
+ .try_into()
+ .expect("wrong size iterator");
+ let t_index_even = Tensor::new(&index_even, x.device())?;
+ let t_index_odd = Tensor::new(&index_odd, x.device())?;
+ let x_c = x.contiguous()?;
+ let rot_x_even = x_c.index_select(&t_index_even, D::Minus1)?;
+ let rot_x_odd_minus = (-1.0 * x_c.index_select(&t_index_odd, D::Minus1)?)?;
+ let rot_x =
+ Tensor::stack(&[&rot_x_odd_minus, &rot_x_even], D::Minus1)?.reshape(x.shape())?;
+ x.broadcast_mul(&cos_emb)? + rot_x.broadcast_mul(&sin_emb)?
+ }
+}
+
+impl Module for Attention {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let (b, n, c) = xs.dims3()?;
+ let qkv = Tensor::cat(
+ &[
+ &self.q.forward(xs)?,
+ &self.k.forward(xs)?,
+ &self.v.forward(xs)?,
+ ],
+ 2,
+ )?
+ .reshape((b, n, 3, self.num_heads, c / self.num_heads))?
+ .transpose(1, 2)? // 02134
+ .transpose(0, 1)? // 20134
+ .transpose(2, 3)?; // 20314
+ let q = qkv.i(0)?;
+ let k = qkv.i(1)?.contiguous()?;
+ let v = qkv.i(2)?.contiguous()?;
+
+ let npt = 1; // num_prefix_tokens = 1 for CLS token
+ let q = Tensor::cat(
+ &[
+ &q.i((0.., 0.., ..npt, 0..))?,
+ &Self::apply_rot_embed_cat(&q.i((0.., 0.., npt.., 0..))?, &self.rot_pos_embed)?,
+ ],
+ 2,
+ )?;
+ let k = Tensor::cat(
+ &[
+ &k.i((0.., 0.., ..npt, 0..))?,
+ &Self::apply_rot_embed_cat(&k.i((0.., 0.., npt.., 0..))?, &self.rot_pos_embed)?,
+ ],
+ 2,
+ )?;
+
+ let q = (q * self.scale)?;
+ let attn = &q.matmul(&k.t()?)?;
+ let attn = candle_nn::ops::softmax(attn, D::Minus1)?;
+ let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?;
+ self.proj.forward(&attn)
+ }
+}
+
+#[derive(Debug)]
+struct Mlp {
+ fc1_g: Linear,
+ fc1_x: Linear,
+ norm: LayerNorm,
+ fc2: Linear,
+}
+
+impl Mlp {
+ fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> {
+ let out_features = in_features;
+ let fc1_g = linear(vb.pp("fc1_g"), in_features, hidden_features, bias)?;
+ let fc1_x = linear(vb.pp("fc1_x"), in_features, hidden_features, bias)?;
+ let norm = layer_norm(hidden_features, 1e-6, vb.pp("norm"))?;
+ let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?;
+ Ok(Self {
+ fc1_g,
+ fc1_x,
+ norm,
+ fc2,
+ })
+ }
+}
+
+impl Module for Mlp {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let xs_g = self.fc1_g.forward(xs)?.silu()?;
+ let xs = self.fc1_x.forward(xs)?;
+ let xs = self.norm.forward(&(xs_g.mul(&xs)?))?;
+ self.fc2.forward(&xs)
+ }
+}
+
+#[derive(Debug)]
+struct Block {
+ norm1: LayerNorm,
+ attn: Attention,
+ norm2: LayerNorm,
+ mlp: Mlp,
+}
+
+impl Block {
+ fn new(vb: VarBuilder, dim: usize, num_heads: usize, rot_pos_embed: &Tensor) -> Result<Self> {
+ let norm1 = layer_norm(dim, 1e-6, vb.pp("norm1"))?;
+ let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true, rot_pos_embed)?;
+ let norm2 = layer_norm(dim, 1e-6, vb.pp("norm2"))?;
+ let hidden_dim = dim * 4 * 2 / 3; // 768 * 4 * 2 / 3 = 3072 * 2 / 3 = 2048
+ let mlp = Mlp::new(vb.pp("mlp"), dim, hidden_dim, true)?;
+ Ok(Self {
+ norm1,
+ attn,
+ norm2,
+ mlp,
+ })
+ }
+}
+
+impl Module for Block {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let residual = xs;
+ let xs = &self.attn.forward(&self.norm1.forward(xs)?)?;
+ let xs = (xs + residual)?;
+ let residual = &xs;
+ let xs = &self.mlp.forward(&self.norm2.forward(&xs)?)?;
+ xs + residual
+ }
+}
+
+#[derive(Debug)]
+struct PatchEmbed {
+ proj: candle_nn::Conv2d,
+ patch_size: (usize, usize),
+ num_patches: usize,
+}
+
+impl PatchEmbed {
+ fn new(
+ vb: VarBuilder,
+ img_size: usize,
+ patch_size: usize,
+ in_chans: usize,
+ embed_dim: usize,
+ ) -> Result<Self> {
+ let config = candle_nn::Conv2dConfig {
+ stride: patch_size,
+ ..Default::default()
+ };
+ let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?;
+ let num_patches = (img_size / patch_size) * (img_size / patch_size);
+ Ok(Self {
+ proj,
+ patch_size: (patch_size, patch_size),
+ num_patches,
+ })
+ }
+}
+
+impl Module for PatchEmbed {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let (_b, _c, h, w) = xs.dims4()?;
+ let (patch_h, patch_w) = self.patch_size;
+ if (h % patch_h) != 0 {
+ candle::bail!("image height {h} is not a multiple of patch height {patch_h}")
+ }
+ if (w % patch_w) != 0 {
+ candle::bail!("image width {w} is not a multiple of patch width {patch_w}")
+ }
+ let xs = self.proj.forward(xs)?;
+ let (b, c, h, w) = xs.dims4()?;
+ // flatten embeddings.
+ xs.reshape((b, c, h * w))?.transpose(1, 2)
+ }
+}
+
+#[derive(Debug)]
+pub struct EVA2VisionTransformer {
+ patch_embed: PatchEmbed,
+ cls_token: Tensor,
+ pos_embed: Tensor,
+ blocks: Vec<Block>,
+ norm: LayerNorm,
+ head: Linear,
+}
+
+impl EVA2VisionTransformer {
+ pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> {
+ let patch_embed =
+ PatchEmbed::new(vb.pp("patch_embed"), IMG_SIZE, PATCH_SIZE, 3, embed_dim)?;
+ let cls_token = vb.get((1, 1, embed_dim), "cls_token")?;
+ let pos_embed = vb.get((1, patch_embed.num_patches + 1, embed_dim), "pos_embed")?;
+ let rot_pos_embed = vb.get((patch_embed.num_patches, 128), "rot_pos_embed")?;
+ let head = linear(vb.pp("head"), embed_dim, NUM_CLASSES, true)?;
+ let norm = layer_norm(embed_dim, 1e-6, vb.pp("norm"))?;
+ let vb_b = vb.pp("blocks");
+ let blocks = (0..depth)
+ .map(|i| {
+ Block::new(
+ vb_b.pp(&i.to_string()),
+ embed_dim,
+ num_heads,
+ &rot_pos_embed,
+ )
+ })
+ .collect::<Result<Vec<_>>>()?;
+ Ok(Self {
+ patch_embed,
+ cls_token,
+ pos_embed,
+ blocks,
+ norm,
+ head,
+ })
+ }
+
+ fn interpolate_pos_encoding(
+ &self,
+ xs: &Tensor,
+ w: usize,
+ h: usize,
+ num_prefix_tokens: usize,
+ ) -> Result<Tensor> {
+ let npatch = xs.dim(1)? - 1;
+ let n = self.pos_embed.dim(1)? - 1;
+ let sqrt_n = (n as f64).sqrt();
+ if npatch == n && w == h {
+ return Ok(self.pos_embed.clone());
+ }
+ // Interpolate only local tokens, i.e. those after the CLS token
+ let prefix_tokens_pos_embed = self.pos_embed.i((0.., ..num_prefix_tokens, 0..))?.clone();
+ let patch_pos_embed = &self.pos_embed.i((0.., num_prefix_tokens.., 0..))?;
+ let dim = xs.dim(D::Minus1)?;
+ let (w0, h0) = ((w / PATCH_SIZE) as f64 + 0.1, (h / PATCH_SIZE) as f64 + 0.1);
+ let patch_pos_embed = patch_pos_embed
+ .reshape((1, sqrt_n as usize, sqrt_n as usize, dim))?
+ .transpose(2, 3)?
+ .transpose(1, 2)?;
+ // This uses bicubic interpolation in the original implementation.
+ let patch_pos_embed = patch_pos_embed.upsample_nearest2d(h0 as usize, w0 as usize)?;
+ let el_count = patch_pos_embed.shape().elem_count();
+ let patch_pos_embed =
+ patch_pos_embed
+ .transpose(1, 2)?
+ .transpose(2, 3)?
+ .reshape((1, el_count / dim, dim))?;
+ Tensor::cat(&[&prefix_tokens_pos_embed, &patch_pos_embed], 1)
+ }
+
+ fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> {
+ let (_b, _nc, w, h) = xs.dims4()?;
+ if (w != IMG_SIZE) || (h != IMG_SIZE) {
+ panic!("Error: The input tensor should have the shape: Bx3x518x518.");
+ }
+ let xs = self.patch_embed.forward(xs)?;
+ let xs = Tensor::cat(&[&self.cls_token, &xs], 1)?;
+ let xs = (&xs + &self.interpolate_pos_encoding(&xs, w, h, 1)?)?;
+ Ok(xs)
+ }
+
+ fn get_intermediate_layers_not_chunked(
+ &self,
+ xs: &Tensor,
+ blocks_to_take: &[usize],
+ ) -> Result<Vec<Tensor>> {
+ let mut xs = self.prepare_tokens_with_mask(xs)?;
+ let mut output = Vec::new();
+ for (i, blk) in self.blocks.iter().enumerate() {
+ xs = blk.forward(&xs)?;
+ if blocks_to_take.contains(&i) {
+ output.push(xs.clone());
+ }
+ }
+ if output.len() != blocks_to_take.len() {
+ candle::bail!(
+ "only {} / {} blocks found",
+ output.len(),
+ blocks_to_take.len()
+ );
+ }
+ Ok(output)
+ }
+
+ pub fn get_intermediate_layers(
+ &self,
+ xs: &Tensor,
+ blocks_to_take: &[usize],
+ reshape: bool,
+ return_class_token: bool,
+ norm: bool,
+ ) -> Result<Tensor> {
+ let outputs = self.get_intermediate_layers_not_chunked(xs, blocks_to_take)?;
+ let outputs = if norm {
+ outputs
+ .iter()
+ .map(|out| self.norm.forward(out))
+ .collect::<Result<Vec<_>>>()?
+ } else {
+ outputs
+ };
+ let class_tokens = outputs
+ .iter()
+ .map(|out| out.i((.., 0)))
+ .collect::<Result<Vec<_>>>()?;
+ let outputs = outputs
+ .iter()
+ .map(|out| out.i((.., 1..)))
+ .collect::<Result<Vec<_>>>()?;
+
+ let outputs = if reshape {
+ let (b, _c, w, h) = xs.dims4()?;
+ let patch_size = self.patch_embed.patch_size.0;
+ let num_channels = outputs[0].elem_count() / (b * (w / patch_size) * (h / patch_size));
+ outputs
+ .iter()
+ .map(|out| {
+ out.reshape((b, w / patch_size, h / patch_size, num_channels))?
+ .transpose(2, 3)?
+ .transpose(1, 2)
+ })
+ .collect::<Result<Vec<_>>>()?
+ } else {
+ outputs
+ };
+
+ let outputs = if return_class_token {
+ outputs
+ .iter()
+ .zip(class_tokens.iter())
+ .map(|(out, class_token)| Tensor::cat(&[out, class_token], D::Minus1))
+ .collect::<Result<Vec<_>>>()?
+ } else {
+ outputs
+ };
+
+ Tensor::stack(&outputs[..], 0)
+ }
+}
+
+impl Module for EVA2VisionTransformer {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let mut xs = self.prepare_tokens_with_mask(xs)?;
+ for blk in self.blocks.iter() {
+ xs = blk.forward(&xs)?
+ }
+ let xs_moy_local_tokens = xs.i((.., 1..))?.mean(1)?;
+ let xs_norm = self.norm.forward(&xs_moy_local_tokens)?;
+ self.head.forward(&xs_norm)
+ }
+}
+
+pub fn vit_base(vb: VarBuilder) -> Result<EVA2VisionTransformer> {
+ EVA2VisionTransformer::new(vb, 12, 768, 12)
+}
+
+pub fn vit_large(vb: VarBuilder) -> Result<EVA2VisionTransformer> {
+ EVA2VisionTransformer::new(vb, 24, 1024, 16)
+}
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index d95d30ae..f5859a99 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -14,6 +14,7 @@ pub mod distilbert;
pub mod efficientnet;
pub mod efficientvit;
pub mod encodec;
+pub mod eva2;
pub mod falcon;
pub mod gemma;
pub mod jina_bert;