diff options
author | v-espitalier <125037408+v-espitalier@users.noreply.github.com> | 2024-07-07 20:09:31 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-07-07 20:09:31 +0200 |
commit | 9cd54aa5d4fb6cf30e0df2d198c8a387db2d9144 (patch) | |
tree | 9988e786128416cf8c77425658e29a67c904a5ad /candle-transformers | |
parent | eec11ce2ce1e81f0fdb1cac5405d07286242dc01 (diff) | |
download | candle-9cd54aa5d4fb6cf30e0df2d198c8a387db2d9144.tar.gz candle-9cd54aa5d4fb6cf30e0df2d198c8a387db2d9144.tar.bz2 candle-9cd54aa5d4fb6cf30e0df2d198c8a387db2d9144.zip |
Add EVA-02 model ( https://arxiv.org/abs/2303.11331 ) (#2311)
* Add EVA-02 model ( https://arxiv.org/abs/2303.11331 )
* Clippy fix.
* And apply fmt.
---------
Co-authored-by: v-espitalier <>
Co-authored-by: Laurent <laurent.mazare@gmail.com>
Diffstat (limited to 'candle-transformers')
-rw-r--r-- | candle-transformers/src/models/eva2.rs | 418 | ||||
-rw-r--r-- | candle-transformers/src/models/mod.rs | 1 |
2 files changed, 419 insertions, 0 deletions
diff --git a/candle-transformers/src/models/eva2.rs b/candle-transformers/src/models/eva2.rs new file mode 100644 index 00000000..eb2df4cd --- /dev/null +++ b/candle-transformers/src/models/eva2.rs @@ -0,0 +1,418 @@ +use candle::{IndexOp, Result, Tensor, D}; +use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder}; + +const IMG_SIZE: usize = 448; +const PATCH_SIZE: usize = 14; +const NUM_CLASSES: usize = 1000; + +fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> { + if bias { + candle_nn::linear(in_dim, out_dim, vb) + } else { + candle_nn::linear_no_bias(in_dim, out_dim, vb) + } +} + +#[derive(Debug)] +struct Attention { + q: Linear, + k: Linear, + v: Linear, + proj: Linear, + rot_pos_embed: Tensor, + num_heads: usize, + scale: f64, +} + +impl Attention { + fn new( + vb: VarBuilder, + dim: usize, + num_heads: usize, + qkv_bias: bool, + proj_bias: bool, + rot_pos_embed: &Tensor, + ) -> Result<Self> { + let q = linear(vb.pp("q_proj"), dim, dim, qkv_bias)?; + let k = linear(vb.pp("k_proj"), dim, dim, false)?; // no bias for Key + let v = linear(vb.pp("v_proj"), dim, dim, qkv_bias)?; + let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?; + let rot_pos_embed = rot_pos_embed.clone(); + let scale = 1. / ((dim / num_heads) as f64).sqrt(); + Ok(Self { + q, + k, + v, + proj, + rot_pos_embed, + num_heads, + scale, + }) + } +} + +impl Attention { + // See: https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/pos_embed_sincos.py#L210 + fn apply_rot_embed_cat(x: &Tensor, emb: &Tensor) -> Result<Tensor> { + let cos_emb = emb.i((0.., 64..128))?; //.transpose(0, 1)?; + let sin_emb = emb.i((0.., 0..64))?; //.transpose(0, 1)?; + let index_even: [u32; 32] = (0u32..=63) + .step_by(2) + .collect::<Vec<_>>() + .try_into() + .expect("wrong size iterator"); + let index_odd: [u32; 32] = (1u32..=63) + .step_by(2) + .collect::<Vec<_>>() + .try_into() + .expect("wrong size iterator"); + let t_index_even = Tensor::new(&index_even, x.device())?; + let t_index_odd = Tensor::new(&index_odd, x.device())?; + let x_c = x.contiguous()?; + let rot_x_even = x_c.index_select(&t_index_even, D::Minus1)?; + let rot_x_odd_minus = (-1.0 * x_c.index_select(&t_index_odd, D::Minus1)?)?; + let rot_x = + Tensor::stack(&[&rot_x_odd_minus, &rot_x_even], D::Minus1)?.reshape(x.shape())?; + x.broadcast_mul(&cos_emb)? + rot_x.broadcast_mul(&sin_emb)? + } +} + +impl Module for Attention { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let (b, n, c) = xs.dims3()?; + let qkv = Tensor::cat( + &[ + &self.q.forward(xs)?, + &self.k.forward(xs)?, + &self.v.forward(xs)?, + ], + 2, + )? + .reshape((b, n, 3, self.num_heads, c / self.num_heads))? + .transpose(1, 2)? // 02134 + .transpose(0, 1)? // 20134 + .transpose(2, 3)?; // 20314 + let q = qkv.i(0)?; + let k = qkv.i(1)?.contiguous()?; + let v = qkv.i(2)?.contiguous()?; + + let npt = 1; // num_prefix_tokens = 1 for CLS token + let q = Tensor::cat( + &[ + &q.i((0.., 0.., ..npt, 0..))?, + &Self::apply_rot_embed_cat(&q.i((0.., 0.., npt.., 0..))?, &self.rot_pos_embed)?, + ], + 2, + )?; + let k = Tensor::cat( + &[ + &k.i((0.., 0.., ..npt, 0..))?, + &Self::apply_rot_embed_cat(&k.i((0.., 0.., npt.., 0..))?, &self.rot_pos_embed)?, + ], + 2, + )?; + + let q = (q * self.scale)?; + let attn = &q.matmul(&k.t()?)?; + let attn = candle_nn::ops::softmax(attn, D::Minus1)?; + let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?; + self.proj.forward(&attn) + } +} + +#[derive(Debug)] +struct Mlp { + fc1_g: Linear, + fc1_x: Linear, + norm: LayerNorm, + fc2: Linear, +} + +impl Mlp { + fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> { + let out_features = in_features; + let fc1_g = linear(vb.pp("fc1_g"), in_features, hidden_features, bias)?; + let fc1_x = linear(vb.pp("fc1_x"), in_features, hidden_features, bias)?; + let norm = layer_norm(hidden_features, 1e-6, vb.pp("norm"))?; + let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?; + Ok(Self { + fc1_g, + fc1_x, + norm, + fc2, + }) + } +} + +impl Module for Mlp { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let xs_g = self.fc1_g.forward(xs)?.silu()?; + let xs = self.fc1_x.forward(xs)?; + let xs = self.norm.forward(&(xs_g.mul(&xs)?))?; + self.fc2.forward(&xs) + } +} + +#[derive(Debug)] +struct Block { + norm1: LayerNorm, + attn: Attention, + norm2: LayerNorm, + mlp: Mlp, +} + +impl Block { + fn new(vb: VarBuilder, dim: usize, num_heads: usize, rot_pos_embed: &Tensor) -> Result<Self> { + let norm1 = layer_norm(dim, 1e-6, vb.pp("norm1"))?; + let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true, rot_pos_embed)?; + let norm2 = layer_norm(dim, 1e-6, vb.pp("norm2"))?; + let hidden_dim = dim * 4 * 2 / 3; // 768 * 4 * 2 / 3 = 3072 * 2 / 3 = 2048 + let mlp = Mlp::new(vb.pp("mlp"), dim, hidden_dim, true)?; + Ok(Self { + norm1, + attn, + norm2, + mlp, + }) + } +} + +impl Module for Block { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let residual = xs; + let xs = &self.attn.forward(&self.norm1.forward(xs)?)?; + let xs = (xs + residual)?; + let residual = &xs; + let xs = &self.mlp.forward(&self.norm2.forward(&xs)?)?; + xs + residual + } +} + +#[derive(Debug)] +struct PatchEmbed { + proj: candle_nn::Conv2d, + patch_size: (usize, usize), + num_patches: usize, +} + +impl PatchEmbed { + fn new( + vb: VarBuilder, + img_size: usize, + patch_size: usize, + in_chans: usize, + embed_dim: usize, + ) -> Result<Self> { + let config = candle_nn::Conv2dConfig { + stride: patch_size, + ..Default::default() + }; + let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?; + let num_patches = (img_size / patch_size) * (img_size / patch_size); + Ok(Self { + proj, + patch_size: (patch_size, patch_size), + num_patches, + }) + } +} + +impl Module for PatchEmbed { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let (_b, _c, h, w) = xs.dims4()?; + let (patch_h, patch_w) = self.patch_size; + if (h % patch_h) != 0 { + candle::bail!("image height {h} is not a multiple of patch height {patch_h}") + } + if (w % patch_w) != 0 { + candle::bail!("image width {w} is not a multiple of patch width {patch_w}") + } + let xs = self.proj.forward(xs)?; + let (b, c, h, w) = xs.dims4()?; + // flatten embeddings. + xs.reshape((b, c, h * w))?.transpose(1, 2) + } +} + +#[derive(Debug)] +pub struct EVA2VisionTransformer { + patch_embed: PatchEmbed, + cls_token: Tensor, + pos_embed: Tensor, + blocks: Vec<Block>, + norm: LayerNorm, + head: Linear, +} + +impl EVA2VisionTransformer { + pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> { + let patch_embed = + PatchEmbed::new(vb.pp("patch_embed"), IMG_SIZE, PATCH_SIZE, 3, embed_dim)?; + let cls_token = vb.get((1, 1, embed_dim), "cls_token")?; + let pos_embed = vb.get((1, patch_embed.num_patches + 1, embed_dim), "pos_embed")?; + let rot_pos_embed = vb.get((patch_embed.num_patches, 128), "rot_pos_embed")?; + let head = linear(vb.pp("head"), embed_dim, NUM_CLASSES, true)?; + let norm = layer_norm(embed_dim, 1e-6, vb.pp("norm"))?; + let vb_b = vb.pp("blocks"); + let blocks = (0..depth) + .map(|i| { + Block::new( + vb_b.pp(&i.to_string()), + embed_dim, + num_heads, + &rot_pos_embed, + ) + }) + .collect::<Result<Vec<_>>>()?; + Ok(Self { + patch_embed, + cls_token, + pos_embed, + blocks, + norm, + head, + }) + } + + fn interpolate_pos_encoding( + &self, + xs: &Tensor, + w: usize, + h: usize, + num_prefix_tokens: usize, + ) -> Result<Tensor> { + let npatch = xs.dim(1)? - 1; + let n = self.pos_embed.dim(1)? - 1; + let sqrt_n = (n as f64).sqrt(); + if npatch == n && w == h { + return Ok(self.pos_embed.clone()); + } + // Interpolate only local tokens, i.e. those after the CLS token + let prefix_tokens_pos_embed = self.pos_embed.i((0.., ..num_prefix_tokens, 0..))?.clone(); + let patch_pos_embed = &self.pos_embed.i((0.., num_prefix_tokens.., 0..))?; + let dim = xs.dim(D::Minus1)?; + let (w0, h0) = ((w / PATCH_SIZE) as f64 + 0.1, (h / PATCH_SIZE) as f64 + 0.1); + let patch_pos_embed = patch_pos_embed + .reshape((1, sqrt_n as usize, sqrt_n as usize, dim))? + .transpose(2, 3)? + .transpose(1, 2)?; + // This uses bicubic interpolation in the original implementation. + let patch_pos_embed = patch_pos_embed.upsample_nearest2d(h0 as usize, w0 as usize)?; + let el_count = patch_pos_embed.shape().elem_count(); + let patch_pos_embed = + patch_pos_embed + .transpose(1, 2)? + .transpose(2, 3)? + .reshape((1, el_count / dim, dim))?; + Tensor::cat(&[&prefix_tokens_pos_embed, &patch_pos_embed], 1) + } + + fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> { + let (_b, _nc, w, h) = xs.dims4()?; + if (w != IMG_SIZE) || (h != IMG_SIZE) { + panic!("Error: The input tensor should have the shape: Bx3x518x518."); + } + let xs = self.patch_embed.forward(xs)?; + let xs = Tensor::cat(&[&self.cls_token, &xs], 1)?; + let xs = (&xs + &self.interpolate_pos_encoding(&xs, w, h, 1)?)?; + Ok(xs) + } + + fn get_intermediate_layers_not_chunked( + &self, + xs: &Tensor, + blocks_to_take: &[usize], + ) -> Result<Vec<Tensor>> { + let mut xs = self.prepare_tokens_with_mask(xs)?; + let mut output = Vec::new(); + for (i, blk) in self.blocks.iter().enumerate() { + xs = blk.forward(&xs)?; + if blocks_to_take.contains(&i) { + output.push(xs.clone()); + } + } + if output.len() != blocks_to_take.len() { + candle::bail!( + "only {} / {} blocks found", + output.len(), + blocks_to_take.len() + ); + } + Ok(output) + } + + pub fn get_intermediate_layers( + &self, + xs: &Tensor, + blocks_to_take: &[usize], + reshape: bool, + return_class_token: bool, + norm: bool, + ) -> Result<Tensor> { + let outputs = self.get_intermediate_layers_not_chunked(xs, blocks_to_take)?; + let outputs = if norm { + outputs + .iter() + .map(|out| self.norm.forward(out)) + .collect::<Result<Vec<_>>>()? + } else { + outputs + }; + let class_tokens = outputs + .iter() + .map(|out| out.i((.., 0))) + .collect::<Result<Vec<_>>>()?; + let outputs = outputs + .iter() + .map(|out| out.i((.., 1..))) + .collect::<Result<Vec<_>>>()?; + + let outputs = if reshape { + let (b, _c, w, h) = xs.dims4()?; + let patch_size = self.patch_embed.patch_size.0; + let num_channels = outputs[0].elem_count() / (b * (w / patch_size) * (h / patch_size)); + outputs + .iter() + .map(|out| { + out.reshape((b, w / patch_size, h / patch_size, num_channels))? + .transpose(2, 3)? + .transpose(1, 2) + }) + .collect::<Result<Vec<_>>>()? + } else { + outputs + }; + + let outputs = if return_class_token { + outputs + .iter() + .zip(class_tokens.iter()) + .map(|(out, class_token)| Tensor::cat(&[out, class_token], D::Minus1)) + .collect::<Result<Vec<_>>>()? + } else { + outputs + }; + + Tensor::stack(&outputs[..], 0) + } +} + +impl Module for EVA2VisionTransformer { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let mut xs = self.prepare_tokens_with_mask(xs)?; + for blk in self.blocks.iter() { + xs = blk.forward(&xs)? + } + let xs_moy_local_tokens = xs.i((.., 1..))?.mean(1)?; + let xs_norm = self.norm.forward(&xs_moy_local_tokens)?; + self.head.forward(&xs_norm) + } +} + +pub fn vit_base(vb: VarBuilder) -> Result<EVA2VisionTransformer> { + EVA2VisionTransformer::new(vb, 12, 768, 12) +} + +pub fn vit_large(vb: VarBuilder) -> Result<EVA2VisionTransformer> { + EVA2VisionTransformer::new(vb, 24, 1024, 16) +} diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs index d95d30ae..f5859a99 100644 --- a/candle-transformers/src/models/mod.rs +++ b/candle-transformers/src/models/mod.rs @@ -14,6 +14,7 @@ pub mod distilbert; pub mod efficientnet; pub mod efficientvit; pub mod encodec; +pub mod eva2; pub mod falcon; pub mod gemma; pub mod jina_bert; |