summaryrefslogtreecommitdiff
path: root/candle-transformers
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2024-08-17 19:31:23 +0100
committerGitHub <noreply@github.com>2024-08-17 20:31:23 +0200
commitc1b9e07e3549574659b189389975c1152b0776f5 (patch)
tree25f30a3c0dc483a86f920e609c5dd1e52594855d /candle-transformers
parent69fdcfe96ac05213b3b166140774f38a99de0b54 (diff)
downloadcandle-c1b9e07e3549574659b189389975c1152b0776f5.tar.gz
candle-c1b9e07e3549574659b189389975c1152b0776f5.tar.bz2
candle-c1b9e07e3549574659b189389975c1152b0776f5.zip
Add support for gemma-2. (#2425)
* Add gemma-2. * Support a couple more models. * Sliding window support. * Example + readme updates. * Update the main readme.
Diffstat (limited to 'candle-transformers')
-rw-r--r--candle-transformers/src/models/gemma2.rs449
-rw-r--r--candle-transformers/src/models/mod.rs1
2 files changed, 450 insertions, 0 deletions
diff --git a/candle-transformers/src/models/gemma2.rs b/candle-transformers/src/models/gemma2.rs
new file mode 100644
index 00000000..f0d65047
--- /dev/null
+++ b/candle-transformers/src/models/gemma2.rs
@@ -0,0 +1,449 @@
+use std::sync::Arc;
+
+use candle::{DType, Device, Module, Result, Tensor, D};
+use candle_nn::{linear_b as linear, Activation, Linear, VarBuilder};
+
+fn default_max_position_embeddings() -> usize {
+ 4096
+}
+
+#[derive(serde::Deserialize, Debug, Clone)]
+pub struct Config {
+ pub attention_bias: bool,
+ pub head_dim: usize,
+ pub hidden_activation: Activation,
+ pub hidden_size: usize,
+ pub intermediate_size: usize,
+ pub num_attention_heads: usize,
+ pub num_hidden_layers: usize,
+ pub num_key_value_heads: usize,
+ pub rms_norm_eps: f64,
+ pub rope_theta: f64,
+ pub vocab_size: usize,
+ pub final_logit_softcapping: Option<f64>,
+ pub attn_logit_softcapping: Option<f64>,
+ pub query_pre_attn_scalar: usize,
+ // TODO: Handle the sliding window in the attention mask.
+ pub sliding_window: Option<usize>,
+
+ #[serde(default = "default_max_position_embeddings")]
+ pub max_position_embeddings: usize,
+}
+
+#[derive(Debug, Clone)]
+struct RmsNorm {
+ weight: Tensor,
+ eps: f64,
+}
+
+impl RmsNorm {
+ fn new(dim: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
+ let weight = vb.get(dim, "weight")?;
+ Ok(Self { weight, eps })
+ }
+}
+
+impl Module for RmsNorm {
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let x_dtype = x.dtype();
+ let internal_dtype = match x_dtype {
+ DType::F16 | DType::BF16 => DType::F32,
+ d => d,
+ };
+ let hidden_size = x.dim(D::Minus1)?;
+ let x = x.to_dtype(internal_dtype)?;
+ let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?;
+ let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
+ x_normed
+ .to_dtype(x_dtype)?
+ .broadcast_mul(&(&self.weight + 1.0)?)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct RotaryEmbedding {
+ sin: Tensor,
+ cos: Tensor,
+}
+
+impl RotaryEmbedding {
+ fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
+ let dim = cfg.head_dim;
+ let max_seq_len = cfg.max_position_embeddings;
+ let inv_freq: Vec<_> = (0..dim)
+ .step_by(2)
+ .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
+ .collect();
+ let inv_freq_len = inv_freq.len();
+ let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
+ let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
+ .to_dtype(dtype)?
+ .reshape((max_seq_len, 1))?;
+ let freqs = t.matmul(&inv_freq)?;
+ Ok(Self {
+ sin: freqs.sin()?,
+ cos: freqs.cos()?,
+ })
+ }
+
+ fn apply_rotary_emb_qkv(
+ &self,
+ q: &Tensor,
+ k: &Tensor,
+ seqlen_offset: usize,
+ ) -> Result<(Tensor, Tensor)> {
+ let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
+ let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
+ let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
+ let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
+ let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
+ Ok((q_embed, k_embed))
+ }
+}
+
+#[derive(Debug, Clone)]
+#[allow(clippy::upper_case_acronyms)]
+struct MLP {
+ gate_proj: Linear,
+ up_proj: Linear,
+ down_proj: Linear,
+ act_fn: candle_nn::Activation,
+}
+
+impl MLP {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let hidden_sz = cfg.hidden_size;
+ let intermediate_sz = cfg.intermediate_size;
+ let gate_proj = linear(hidden_sz, intermediate_sz, false, vb.pp("gate_proj"))?;
+ let up_proj = linear(hidden_sz, intermediate_sz, false, vb.pp("up_proj"))?;
+ let down_proj = linear(intermediate_sz, hidden_sz, false, vb.pp("down_proj"))?;
+ Ok(Self {
+ gate_proj,
+ up_proj,
+ down_proj,
+ act_fn: cfg.hidden_activation,
+ })
+ }
+}
+
+impl Module for MLP {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
+ let rhs = xs.apply(&self.up_proj)?;
+ (lhs * rhs)?.apply(&self.down_proj)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct Attention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ o_proj: Linear,
+ num_heads: usize,
+ num_kv_heads: usize,
+ num_kv_groups: usize,
+ head_dim: usize,
+ attn_logit_softcapping: Option<f64>,
+ rotary_emb: Arc<RotaryEmbedding>,
+ kv_cache: Option<(Tensor, Tensor)>,
+ use_flash_attn: bool,
+}
+
+impl Attention {
+ fn new(
+ rotary_emb: Arc<RotaryEmbedding>,
+ use_flash_attn: bool,
+ cfg: &Config,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let hidden_sz = cfg.hidden_size;
+ let num_heads = cfg.num_attention_heads;
+ let num_kv_heads = cfg.num_key_value_heads;
+ let num_kv_groups = num_heads / num_kv_heads;
+ let head_dim = cfg.head_dim;
+ let bias = cfg.attention_bias;
+ let q_proj = linear(hidden_sz, num_heads * head_dim, bias, vb.pp("q_proj"))?;
+ let k_proj = linear(hidden_sz, num_kv_heads * head_dim, bias, vb.pp("k_proj"))?;
+ let v_proj = linear(hidden_sz, num_kv_heads * head_dim, bias, vb.pp("v_proj"))?;
+ let o_proj = linear(num_heads * head_dim, hidden_sz, bias, vb.pp("o_proj"))?;
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ o_proj,
+ num_heads,
+ num_kv_heads,
+ num_kv_groups,
+ head_dim,
+ attn_logit_softcapping: cfg.attn_logit_softcapping,
+ rotary_emb,
+ kv_cache: None,
+ use_flash_attn,
+ })
+ }
+
+ fn forward(
+ &mut self,
+ xs: &Tensor,
+ attention_mask: Option<&Tensor>,
+ seqlen_offset: usize,
+ ) -> Result<Tensor> {
+ let (b_sz, q_len, _) = xs.dims3()?;
+
+ let query_states = self.q_proj.forward(xs)?;
+ let key_states = self.k_proj.forward(xs)?;
+ let value_states = self.v_proj.forward(xs)?;
+
+ let query_states = query_states
+ .reshape((b_sz, q_len, self.num_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let key_states = key_states
+ .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let value_states = value_states
+ .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+
+ let (query_states, key_states) =
+ self.rotary_emb
+ .apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
+
+ let (key_states, value_states) = match &self.kv_cache {
+ None => (key_states, value_states),
+ Some((prev_k, prev_v)) => {
+ let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
+ let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
+ (key_states, value_states)
+ }
+ };
+ self.kv_cache = Some((key_states.clone(), value_states.clone()));
+
+ let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
+ let value_states =
+ crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
+
+ let attn_output = if self.use_flash_attn {
+ // flash-attn expects (b_sz, seq_len, nheads, head_dim)
+ let q = query_states.transpose(1, 2)?;
+ let k = key_states.transpose(1, 2)?;
+ let v = value_states.transpose(1, 2)?;
+ let scale = 1f32 / (self.head_dim as f32).sqrt();
+ flash_attn(&q, &k, &v, scale, attention_mask.is_some())?.transpose(1, 2)?
+ } else {
+ let scale = 1f64 / f64::sqrt(self.head_dim as f64);
+ let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
+
+ let attn_weights = match self.attn_logit_softcapping {
+ None => attn_weights,
+ Some(sc) => ((attn_weights / sc)?.tanh()? * sc)?,
+ };
+
+ let attn_weights = match attention_mask {
+ None => attn_weights,
+ Some(mask) => attn_weights.broadcast_add(mask)?,
+ };
+ let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
+ attn_weights.matmul(&value_states)?
+ };
+ attn_output
+ .transpose(1, 2)?
+ .reshape((b_sz, q_len, ()))?
+ .apply(&self.o_proj)
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.kv_cache = None
+ }
+}
+
+#[cfg(feature = "flash-attn")]
+fn flash_attn(
+ q: &Tensor,
+ k: &Tensor,
+ v: &Tensor,
+ softmax_scale: f32,
+ causal: bool,
+) -> Result<Tensor> {
+ candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
+}
+
+#[cfg(not(feature = "flash-attn"))]
+fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
+ unimplemented!("compile with '--features flash-attn'")
+}
+
+#[derive(Debug, Clone)]
+struct DecoderLayer {
+ self_attn: Attention,
+ mlp: MLP,
+ input_layernorm: RmsNorm,
+ pre_feedforward_layernorm: RmsNorm,
+ post_feedforward_layernorm: RmsNorm,
+ post_attention_layernorm: RmsNorm,
+}
+
+impl DecoderLayer {
+ fn new(
+ rotary_emb: Arc<RotaryEmbedding>,
+ use_flash_attn: bool,
+ cfg: &Config,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let self_attn = Attention::new(rotary_emb, use_flash_attn, cfg, vb.pp("self_attn"))?;
+ let mlp = MLP::new(cfg, vb.pp("mlp"))?;
+ let input_layernorm =
+ RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
+ let pre_feedforward_layernorm = RmsNorm::new(
+ cfg.hidden_size,
+ cfg.rms_norm_eps,
+ vb.pp("pre_feedforward_layernorm"),
+ )?;
+ let post_feedforward_layernorm = RmsNorm::new(
+ cfg.hidden_size,
+ cfg.rms_norm_eps,
+ vb.pp("post_feedforward_layernorm"),
+ )?;
+ let post_attention_layernorm = RmsNorm::new(
+ cfg.hidden_size,
+ cfg.rms_norm_eps,
+ vb.pp("post_attention_layernorm"),
+ )?;
+ Ok(Self {
+ self_attn,
+ mlp,
+ input_layernorm,
+ pre_feedforward_layernorm,
+ post_feedforward_layernorm,
+ post_attention_layernorm,
+ })
+ }
+
+ fn forward(
+ &mut self,
+ xs: &Tensor,
+ attention_mask: Option<&Tensor>,
+ seqlen_offset: usize,
+ ) -> Result<Tensor> {
+ let residual = xs;
+ let xs = self.input_layernorm.forward(xs)?;
+ let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
+ let xs = xs.apply(&self.post_attention_layernorm)?;
+ let xs = (xs + residual)?;
+ let residual = &xs;
+ let xs = xs.apply(&self.pre_feedforward_layernorm)?;
+ let xs = xs.apply(&self.mlp)?;
+ let xs = xs.apply(&self.post_feedforward_layernorm)?;
+ residual + xs
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.self_attn.clear_kv_cache()
+ }
+}
+
+#[derive(Debug, Clone)]
+pub struct Model {
+ embed_tokens: candle_nn::Embedding,
+ layers: Vec<DecoderLayer>,
+ norm: RmsNorm,
+ lm_head: Linear,
+ final_logit_softcapping: Option<f64>,
+ device: Device,
+ dtype: DType,
+ hidden_size: usize,
+ sliding_window: Option<usize>,
+}
+
+impl Model {
+ pub fn new(use_flash_attn: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let vb_m = vb.pp("model");
+ let embed_tokens =
+ candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
+ let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
+ let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
+ let vb_l = vb_m.pp("layers");
+ for layer_idx in 0..cfg.num_hidden_layers {
+ let layer =
+ DecoderLayer::new(rotary_emb.clone(), use_flash_attn, cfg, vb_l.pp(layer_idx))?;
+ layers.push(layer)
+ }
+ let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
+ let lm_head = Linear::new(embed_tokens.embeddings().clone(), None);
+ Ok(Self {
+ embed_tokens,
+ layers,
+ norm,
+ lm_head,
+ final_logit_softcapping: cfg.final_logit_softcapping,
+ device: vb.device().clone(),
+ dtype: vb.dtype(),
+ hidden_size: cfg.hidden_size,
+ sliding_window: cfg.sliding_window,
+ })
+ }
+
+ fn prepare_decoder_attention_mask(
+ &self,
+ b_size: usize,
+ tgt_len: usize,
+ seqlen_offset: usize,
+ ) -> Result<Tensor> {
+ let mask: Vec<_> = match self.sliding_window {
+ None => (0..tgt_len)
+ .flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
+ .collect(),
+ Some(sliding_window) => (0..tgt_len)
+ .flat_map(|i| {
+ (0..tgt_len).map(move |j| {
+ if i < j || j + sliding_window < i {
+ f32::NEG_INFINITY
+ } else {
+ 0.
+ }
+ })
+ })
+ .collect(),
+ };
+ let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
+ let mask = if seqlen_offset > 0 {
+ let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
+ Tensor::cat(&[&mask0, &mask], D::Minus1)?
+ } else {
+ mask
+ };
+ mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
+ .to_dtype(self.dtype)
+ }
+
+ pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
+ let (b_size, seq_len) = input_ids.dims2()?;
+ let attention_mask = if seq_len <= 1 {
+ None
+ } else {
+ let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
+ Some(mask)
+ };
+ let xs = self.embed_tokens.forward(input_ids)?;
+ let mut xs = (xs * (self.hidden_size as f64).sqrt())?;
+ for layer in self.layers.iter_mut() {
+ xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
+ }
+ let logits = xs
+ .narrow(1, seq_len - 1, 1)?
+ .apply(&self.norm)?
+ .apply(&self.lm_head)?;
+ let logits = match self.final_logit_softcapping {
+ None => logits,
+ Some(sc) => ((logits / sc)?.tanh()? * sc)?,
+ };
+
+ Ok(logits)
+ }
+
+ pub fn clear_kv_cache(&mut self) {
+ for layer in self.layers.iter_mut() {
+ layer.clear_kv_cache()
+ }
+ }
+}
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index 7baaaf72..16952c6a 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -20,6 +20,7 @@ pub mod eva2;
pub mod falcon;
pub mod flux;
pub mod gemma;
+pub mod gemma2;
pub mod glm4;
pub mod hiera;
pub mod jina_bert;