summaryrefslogtreecommitdiff
path: root/candle-transformers
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2024-04-21 07:37:07 +0200
committerGitHub <noreply@github.com>2024-04-21 07:37:07 +0200
commitc388be93e73d74dc42cacb61ebc2123a61d0c721 (patch)
tree97356c8239b9c7ecb8df41826b74fc244e0fad1e /candle-transformers
parentd22f1d4f4ee937fd4e59924e0ca5f15b81ff9d79 (diff)
downloadcandle-c388be93e73d74dc42cacb61ebc2123a61d0c721.tar.gz
candle-c388be93e73d74dc42cacb61ebc2123a61d0c721.tar.bz2
candle-c388be93e73d74dc42cacb61ebc2123a61d0c721.zip
Updated quantized phi model (#2099)
* Quantized phi in a separate file. * Add the quantized phi example + rework the model code. * Improve the phi model. * Get some generation out. * Use the appropriate rope shape. * Tweak the default prompt. --------- Co-authored-by: Jane Doe <jane.doe@example.org>
Diffstat (limited to 'candle-transformers')
-rw-r--r--candle-transformers/src/models/mod.rs1
-rw-r--r--candle-transformers/src/models/quantized_phi.rs288
2 files changed, 289 insertions, 0 deletions
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index f4a71931..5f1a40ad 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -37,6 +37,7 @@ pub mod quantized_mistral;
pub mod quantized_mixformer;
pub mod quantized_moondream;
pub mod quantized_mpt;
+pub mod quantized_phi;
pub mod quantized_recurrent_gemma;
pub mod quantized_rwkv_v5;
pub mod quantized_rwkv_v6;
diff --git a/candle-transformers/src/models/quantized_phi.rs b/candle-transformers/src/models/quantized_phi.rs
new file mode 100644
index 00000000..0ebf7f4d
--- /dev/null
+++ b/candle-transformers/src/models/quantized_phi.rs
@@ -0,0 +1,288 @@
+use std::collections::HashMap;
+
+use candle::quantized::gguf_file;
+use candle::quantized::QTensor;
+use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
+use candle_nn::{Embedding, LayerNorm};
+
+pub const MAX_SEQ_LEN: usize = 4096;
+
+#[derive(Debug, Clone)]
+struct QLinear {
+ inner: candle::quantized::QMatMul,
+ bias: Tensor,
+ span: tracing::Span,
+}
+
+impl QLinear {
+ fn new<R: std::io::Read + std::io::Seek>(
+ ct: &gguf_file::Content,
+ r: &mut R,
+ name: &str,
+ device: &Device,
+ ) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
+ let w = ct.tensor(r, &format!("{name}.weight"), device)?;
+ let b = ct.tensor(r, &format!("{name}.bias"), device)?;
+ let inner = candle::quantized::QMatMul::from_qtensor(w)?;
+ let bias = b.dequantize(device)?;
+ Ok(Self { inner, bias, span })
+ }
+}
+
+impl Module for QLinear {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ self.inner.forward(xs)?.broadcast_add(&self.bias)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct Mlp {
+ ffn_up: QLinear,
+ ffn_down: QLinear,
+}
+
+impl Module for Mlp {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ xs.apply(&self.ffn_up)?.gelu()?.apply(&self.ffn_down)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct LayerWeights {
+ attn_qkv: QLinear,
+ attn_output: QLinear,
+ attn_norm: LayerNorm,
+ mlp: Mlp,
+ n_head: usize,
+ n_kv_head: usize,
+ head_dim: usize,
+ cos: Tensor,
+ sin: Tensor,
+ rope_dim: usize,
+ neg_inf: Tensor,
+ kv_cache: Option<(Tensor, Tensor)>,
+ span_attn: tracing::Span,
+ span_rot: tracing::Span,
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: &Tensor) -> Result<Tensor> {
+ let shape = mask.shape();
+ let m = mask.where_cond(&on_true.broadcast_as(shape.dims())?, on_false)?;
+ Ok(m)
+}
+
+impl LayerWeights {
+ fn apply_rotary_emb(&self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let _enter = self.span_rot.enter();
+ let (_b_sz, _n_head, seq_len, _n_embd) = xs.dims4()?;
+ let xs_rot = xs.i((.., .., .., ..self.rope_dim))?;
+ let xs_pass = xs.i((.., .., .., self.rope_dim..))?;
+ let cos = self.cos.narrow(0, index_pos, seq_len)?;
+ let sin = self.sin.narrow(0, index_pos, seq_len)?;
+ let xs_rot = candle_nn::rotary_emb::rope(&xs_rot.contiguous()?, &cos, &sin)?;
+ Tensor::cat(&[&xs_rot, &xs_pass], D::Minus1)
+ }
+
+ fn forward_attn(
+ &mut self,
+ x: &Tensor,
+ mask: Option<&Tensor>,
+ index_pos: usize,
+ ) -> Result<Tensor> {
+ let _enter = self.span_attn.enter();
+ let (b_sz, seq_len, n_embd) = x.dims3()?;
+ let qkv =
+ self.attn_qkv
+ .forward(x)?
+ .reshape((b_sz, seq_len, 3, self.n_head, self.head_dim))?;
+
+ let q = qkv.i((.., .., 0))?.transpose(1, 2)?;
+ let k = qkv.i((.., .., 1))?.transpose(1, 2)?;
+ let v = qkv.i((.., .., 2))?.transpose(1, 2)?;
+ // This call to contiguous ensures that the fast kernel can be called below. It's
+ // actually a no-op except when processing the initial prompt so has no significant
+ // impact on performance.
+ let v = v.contiguous()?;
+
+ let q = self.apply_rotary_emb(&q, index_pos)?.contiguous()?;
+ let k = self.apply_rotary_emb(&k, index_pos)?;
+
+ let (k, v) = match &self.kv_cache {
+ None => (k.contiguous()?, v.contiguous()?),
+ Some((k_cache, v_cache)) => {
+ if index_pos == 0 {
+ (k.contiguous()?, v.contiguous()?)
+ } else {
+ let k = Tensor::cat(&[k_cache, &k], 2)?;
+ let v = Tensor::cat(&[v_cache, &v], 2)?;
+ (k.contiguous()?, v.contiguous()?)
+ }
+ }
+ };
+ self.kv_cache = Some((k.clone(), v.clone()));
+
+ let k = crate::utils::repeat_kv(k, self.n_head / self.n_kv_head)?;
+ let v = crate::utils::repeat_kv(v, self.n_head / self.n_kv_head)?;
+
+ let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
+ let att = match mask {
+ None => att,
+ Some(mask) => {
+ let mask = mask.broadcast_as(att.shape())?;
+ masked_fill(&att, &mask, &self.neg_inf)?
+ }
+ };
+ let att = candle_nn::ops::softmax_last_dim(&att)?;
+ // Convert to contiguous as matmul doesn't support strided vs for now.
+ let y = att.matmul(&v.contiguous()?)?;
+ let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
+ let y = self.attn_output.forward(&y)?;
+ Ok(y)
+ }
+}
+
+#[derive(Debug, Clone)]
+pub struct ModelWeights {
+ tok_embeddings: Embedding,
+ layers: Vec<LayerWeights>,
+ output_norm: LayerNorm,
+ output: QLinear,
+ masks: HashMap<usize, Tensor>,
+ span: tracing::Span,
+ span_output: tracing::Span,
+}
+
+fn precomput_freqs_cis(
+ head_dim: usize,
+ freq_base: f32,
+ device: &Device,
+) -> Result<(Tensor, Tensor)> {
+ let theta: Vec<_> = (0..head_dim)
+ .step_by(2)
+ .map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
+ .collect();
+ let theta = Tensor::new(theta.as_slice(), device)?;
+ let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
+ .to_dtype(DType::F32)?
+ .reshape((MAX_SEQ_LEN, 1))?
+ .matmul(&theta.reshape((1, theta.elem_count()))?)?;
+ let cos = idx_theta.cos()?;
+ let sin = idx_theta.sin()?;
+ Ok((cos, sin))
+}
+
+fn layer_norm(w: QTensor, b: QTensor, eps: f64) -> Result<LayerNorm> {
+ let w = w.dequantize(&w.device())?;
+ let b = b.dequantize(&b.device())?;
+ let ln = LayerNorm::new(w, b, eps);
+ Ok(ln)
+}
+
+impl ModelWeights {
+ pub fn from_gguf<R: std::io::Seek + std::io::Read>(
+ ct: gguf_file::Content,
+ reader: &mut R,
+ device: &Device,
+ ) -> Result<Self> {
+ let md_get = |s: &str| match ct.metadata.get(s) {
+ None => candle::bail!("cannot find {s} in metadata"),
+ Some(v) => Ok(v),
+ };
+
+ // Parameter extraction from metadata.
+ let head_count = md_get("phi2.attention.head_count")?.to_u32()? as usize;
+ let head_count_kv = md_get("phi2.attention.head_count_kv")?.to_u32()? as usize;
+ let block_count = md_get("phi2.block_count")?.to_u32()? as usize;
+ let embedding_length = md_get("phi2.embedding_length")?.to_u32()? as usize;
+ let rope_dim = md_get("phi2.rope.dimension_count")?.to_u32()? as usize;
+ let ln_eps = md_get("phi2.attention.layer_norm_epsilon")?.to_f32()? as f64;
+ let (cos, sin) = precomput_freqs_cis(rope_dim, 10_000., device)?;
+ let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?;
+
+ let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?;
+ let tok_embeddings = tok_embeddings.dequantize(device)?;
+ let output_norm = layer_norm(
+ ct.tensor(reader, "output_norm.weight", device)?,
+ ct.tensor(reader, "output_norm.bias", device)?,
+ ln_eps,
+ )?;
+ let output = QLinear::new(&ct, reader, "output", device)?;
+ let mut layers = Vec::with_capacity(block_count);
+ for layer_idx in 0..block_count {
+ let prefix = format!("blk.{layer_idx}");
+ let ffn_up = QLinear::new(&ct, reader, &format!("{prefix}.ffn_up"), device)?;
+ let ffn_down = QLinear::new(&ct, reader, &format!("{prefix}.ffn_down"), device)?;
+ let mlp = Mlp { ffn_up, ffn_down };
+ let attn_norm = layer_norm(
+ ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?,
+ ct.tensor(reader, &format!("{prefix}.attn_norm.bias"), device)?,
+ ln_eps,
+ )?;
+ let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
+ let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
+ layers.push(LayerWeights {
+ attn_qkv: QLinear::new(&ct, reader, &format!("{prefix}.attn_qkv"), device)?,
+ attn_output: QLinear::new(&ct, reader, &format!("{prefix}.attn_output"), device)?,
+ attn_norm,
+ mlp,
+ n_head: head_count,
+ n_kv_head: head_count_kv,
+ head_dim: embedding_length / head_count,
+ cos: cos.clone(),
+ sin: sin.clone(),
+ rope_dim,
+ neg_inf: neg_inf.clone(),
+ kv_cache: None,
+ span_attn,
+ span_rot,
+ })
+ }
+ let span = tracing::span!(tracing::Level::TRACE, "model");
+ let span_output = tracing::span!(tracing::Level::TRACE, "output");
+ Ok(Self {
+ tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
+ layers,
+ output_norm,
+ output,
+ masks: HashMap::new(),
+ span,
+ span_output,
+ })
+ }
+
+ fn mask(&mut self, t: usize, device: &Device) -> Result<Tensor> {
+ if let Some(mask) = self.masks.get(&t) {
+ Ok(mask.clone())
+ } else {
+ let mask: Vec<_> = (0..t)
+ .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
+ .collect();
+ let mask = Tensor::from_slice(&mask, (t, t), device)?;
+ self.masks.insert(t, mask.clone());
+ Ok(mask)
+ }
+ }
+
+ pub fn forward(&mut self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let (_b_sz, seq_len) = xs.dims2()?;
+ let mask = if seq_len == 1 {
+ None
+ } else {
+ Some(self.mask(seq_len, xs.device())?)
+ };
+ let _enter = self.span.enter();
+ let mut xs = self.tok_embeddings.forward(xs)?;
+ for layer in self.layers.iter_mut() {
+ let residual = &xs;
+ let xs_norm = xs.apply(&layer.attn_norm)?;
+ let attn_outputs = layer.forward_attn(&xs_norm, mask.as_ref(), index_pos)?;
+ let feed_forward_hidden_states = layer.mlp.forward(&xs_norm)?;
+ xs = (attn_outputs + feed_forward_hidden_states + residual)?
+ }
+ let xs = xs.apply(&self.output_norm)?.i((.., seq_len - 1, ..))?;
+ let _enter = self.span_output.enter();
+ self.output.forward(&xs)
+ }
+}