summaryrefslogtreecommitdiff
path: root/candle-transformers
diff options
context:
space:
mode:
authorZhuo Jinggang <jg.zhuo@outlook.com>2024-07-12 16:00:03 +0800
committerGitHub <noreply@github.com>2024-07-12 10:00:03 +0200
commitc63048d3748649c6f13148eb01e6d812d897a0d2 (patch)
tree275f50476521bf47bb89530dd822a45ae776e6d3 /candle-transformers
parenta226a9736baee550b01de53cb3e416d3d94e69d3 (diff)
downloadcandle-c63048d3748649c6f13148eb01e6d812d897a0d2.tar.gz
candle-c63048d3748649c6f13148eb01e6d812d897a0d2.tar.bz2
candle-c63048d3748649c6f13148eb01e6d812d897a0d2.zip
add quantized qwen2 (#2329)
* add quantized version of qwen2 and corresponding example for qwen2-instruct * fix quantized qwen2 clippy error
Diffstat (limited to 'candle-transformers')
-rw-r--r--candle-transformers/src/models/mod.rs1
-rw-r--r--candle-transformers/src/models/quantized_qwen2.rs323
2 files changed, 324 insertions, 0 deletions
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index 86a0ec08..7baa12e6 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -47,6 +47,7 @@ pub mod quantized_moondream;
pub mod quantized_mpt;
pub mod quantized_phi;
pub mod quantized_phi3;
+pub mod quantized_qwen2;
pub mod quantized_recurrent_gemma;
pub mod quantized_rwkv_v5;
pub mod quantized_rwkv_v6;
diff --git a/candle-transformers/src/models/quantized_qwen2.rs b/candle-transformers/src/models/quantized_qwen2.rs
new file mode 100644
index 00000000..addfab2b
--- /dev/null
+++ b/candle-transformers/src/models/quantized_qwen2.rs
@@ -0,0 +1,323 @@
+use crate::{quantized_nn::RmsNorm, utils::repeat_kv};
+use candle::{
+ quantized::{gguf_file, QMatMul},
+ DType, Device, IndexOp, Result, Tensor,
+};
+use candle_nn::{Embedding, Module};
+use std::collections::HashMap;
+
+#[derive(Debug, Clone)]
+struct Mlp {
+ feed_forward_w1: QMatMul,
+ feed_forward_w2: QMatMul,
+ feed_forward_w3: QMatMul,
+}
+
+impl Module for Mlp {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let w1 = self.feed_forward_w1.forward(xs)?;
+ let w3 = self.feed_forward_w3.forward(xs)?;
+ self.feed_forward_w2
+ .forward(&(candle_nn::ops::silu(&w1)? * w3)?)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct LayerWeights {
+ attention_wq: QMatMul,
+ attention_wk: QMatMul,
+ attention_wv: QMatMul,
+ attention_bq: Tensor,
+ attention_bk: Tensor,
+ attention_bv: Tensor,
+ attention_wo: QMatMul,
+ attention_norm: RmsNorm,
+ mlp: Mlp,
+ ffn_norm: RmsNorm,
+ n_head: usize,
+ n_kv_head: usize,
+ head_dim: usize,
+ cos: Tensor,
+ sin: Tensor,
+ neg_inf: Tensor,
+ kv_cache: Option<(Tensor, Tensor)>,
+ span_attn: tracing::Span,
+ span_rot: tracing::Span,
+ span_mlp: tracing::Span,
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: &Tensor) -> Result<Tensor> {
+ let shape = mask.shape();
+ let m = mask.where_cond(&on_true.broadcast_as(shape.dims())?, on_false)?;
+ Ok(m)
+}
+
+impl LayerWeights {
+ fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let _enter = self.span_rot.enter();
+ let (_b_sz, _n_head, seq_len, _n_embd) = x.dims4()?;
+ let cos = self.cos.narrow(0, index_pos, seq_len)?;
+ let sin = self.sin.narrow(0, index_pos, seq_len)?;
+ candle_nn::rotary_emb::rope(&x.contiguous()?, &cos, &sin)
+ }
+
+ fn forward_attn(
+ &mut self,
+ x: &Tensor,
+ mask: Option<&Tensor>,
+ index_pos: usize,
+ ) -> Result<Tensor> {
+ let _enter = self.span_attn.enter();
+ let (b_sz, seq_len, n_embd) = x.dims3()?;
+
+ let q = self.attention_wq.forward(x)?;
+ let k = self.attention_wk.forward(x)?;
+ let v = self.attention_wv.forward(x)?;
+
+ let q = q.broadcast_add(&self.attention_bq)?;
+ let k = k.broadcast_add(&self.attention_bk)?;
+ let v = v.broadcast_add(&self.attention_bv)?;
+
+ let q = q
+ .reshape((b_sz, seq_len, self.n_head, self.head_dim))?
+ .transpose(1, 2)?
+ .contiguous()?;
+ let k = k
+ .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
+ .transpose(1, 2)?
+ .contiguous()?;
+ let v = v
+ .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
+ .transpose(1, 2)?
+ .contiguous()?;
+
+ // let (q, k) = self
+ // .rotary_embedding
+ // .apply_rotary_emb_qkv(&q, &k, index_pos)?;
+ let q = self.apply_rotary_emb(&q, index_pos)?;
+ let k = self.apply_rotary_emb(&k, index_pos)?;
+
+ let (k, v) = match &self.kv_cache {
+ None => (k, v),
+ Some((k_cache, v_cache)) => {
+ if index_pos == 0 {
+ (k, v)
+ } else {
+ let k = Tensor::cat(&[k_cache, &k], 2)?;
+ let v = Tensor::cat(&[v_cache, &v], 2)?;
+ (k, v)
+ }
+ }
+ };
+ self.kv_cache = Some((k.clone(), v.clone()));
+
+ // Support for MQA, useful for 70B models and mistral.
+ let k = repeat_kv(k, self.n_head / self.n_kv_head)?;
+ let v = repeat_kv(v, self.n_head / self.n_kv_head)?;
+
+ let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
+ let att = match mask {
+ None => att,
+ Some(mask) => {
+ let mask = mask.broadcast_as(att.shape())?;
+ masked_fill(&att, &mask, &self.neg_inf)?
+ }
+ };
+ let att = candle_nn::ops::softmax_last_dim(&att)?;
+ // Convert to contiguous as matmul doesn't support strided vs for now.
+ let y = att.matmul(&v.contiguous()?)?;
+ let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
+ let y = self.attention_wo.forward(&y)?;
+ Ok(y)
+ }
+}
+
+pub struct ModelWeights {
+ tok_embeddings: Embedding,
+ layers: Vec<LayerWeights>,
+ norm: RmsNorm,
+ output: QMatMul,
+ masks: HashMap<usize, Tensor>,
+ span: tracing::Span,
+ span_output: tracing::Span,
+}
+
+fn precomput_freqs_cis(
+ head_dim: usize,
+ freq_base: f32,
+ context_length: usize,
+ device: &Device,
+) -> Result<(Tensor, Tensor)> {
+ let theta: Vec<_> = (0..head_dim)
+ .step_by(2)
+ .map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
+ .collect();
+ let theta = Tensor::new(theta.as_slice(), device)?;
+ let idx_theta = Tensor::arange(0, context_length as u32, device)?
+ .to_dtype(DType::F32)?
+ .reshape((context_length, 1))?
+ .matmul(&theta.reshape((1, theta.elem_count()))?)?;
+ let cos = idx_theta.cos()?;
+ let sin = idx_theta.sin()?;
+ Ok((cos, sin))
+}
+
+impl ModelWeights {
+ pub fn from_gguf<R: std::io::Seek + std::io::Read>(
+ ct: gguf_file::Content,
+ reader: &mut R,
+ device: &Device,
+ ) -> Result<Self> {
+ let md_get = |s: &str| match ct.metadata.get(s) {
+ None => candle::bail!("cannot find {s} in metadata"),
+ Some(v) => Ok(v),
+ };
+
+ let head_count = md_get("qwen2.attention.head_count")?.to_u32()? as usize;
+ let head_count_kv = md_get("qwen2.attention.head_count_kv")?.to_u32()? as usize;
+ let embedding_length = md_get("qwen2.embedding_length")?.to_u32()? as usize;
+ let context_length = md_get("qwen2.context_length")?.to_u32()? as usize;
+ let block_count = md_get("qwen2.block_count")?.to_u32()? as usize;
+ let rms_norm_eps = md_get("qwen2.attention.layer_norm_rms_epsilon")?.to_f32()? as f64;
+ let rope_freq_base = md_get("qwen2.rope.freq_base")
+ .and_then(|m| m.to_f32())
+ .unwrap_or(10000f32);
+
+ let head_dim = embedding_length / head_count;
+
+ let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?;
+
+ let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?;
+ let tok_embeddings = tok_embeddings.dequantize(device)?;
+ let norm = RmsNorm::from_qtensor(
+ ct.tensor(reader, "output_norm.weight", device)?,
+ rms_norm_eps,
+ )?;
+ let output = match ct.tensor(reader, "output.weight", device) {
+ Ok(v) => QMatMul::from_qtensor(v)?,
+ _ => {
+ // use tie_word_embeddings
+ QMatMul::from_qtensor(ct.tensor(reader, "token_embd.weight", device)?)?
+ }
+ };
+
+ let (cos, sin) = precomput_freqs_cis(head_dim, rope_freq_base, context_length, device)?;
+
+ let mut layers = Vec::with_capacity(block_count);
+
+ for layer_idx in 0..block_count {
+ let prefix = format!("blk.{layer_idx}");
+ let attention_wq = ct.tensor(reader, &format!("{prefix}.attn_q.weight"), device)?;
+ let attention_wk = ct.tensor(reader, &format!("{prefix}.attn_k.weight"), device)?;
+ let attention_wv = ct.tensor(reader, &format!("{prefix}.attn_v.weight"), device)?;
+
+ let attention_bq = ct.tensor(reader, &format!("{prefix}.attn_q.bias"), device)?;
+ let attention_bk = ct.tensor(reader, &format!("{prefix}.attn_k.bias"), device)?;
+ let attention_bv = ct.tensor(reader, &format!("{prefix}.attn_v.bias"), device)?;
+
+ let attention_wo =
+ ct.tensor(reader, &format!("{prefix}.attn_output.weight"), device)?;
+
+ let mlp = {
+ let feed_forward_w1 =
+ ct.tensor(reader, &format!("{prefix}.ffn_gate.weight"), device)?;
+ let feed_forward_w2 =
+ ct.tensor(reader, &format!("{prefix}.ffn_down.weight"), device)?;
+ let feed_forward_w3 =
+ ct.tensor(reader, &format!("{prefix}.ffn_up.weight"), device)?;
+ Mlp {
+ feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1)?,
+ feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2)?,
+ feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3)?,
+ }
+ };
+
+ let attention_norm =
+ ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?;
+ let ffn_norm = ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"), device)?;
+
+ let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
+ let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
+ let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
+
+ layers.push(LayerWeights {
+ attention_wq: QMatMul::from_qtensor(attention_wq)?,
+ attention_wk: QMatMul::from_qtensor(attention_wk)?,
+ attention_wv: QMatMul::from_qtensor(attention_wv)?,
+ attention_bq: attention_bq.dequantize(device)?,
+ attention_bk: attention_bk.dequantize(device)?,
+ attention_bv: attention_bv.dequantize(device)?,
+ attention_wo: QMatMul::from_qtensor(attention_wo)?,
+ attention_norm: RmsNorm::from_qtensor(attention_norm, rms_norm_eps)?,
+ cos: cos.clone(),
+ sin: sin.clone(),
+ mlp,
+ ffn_norm: RmsNorm::from_qtensor(ffn_norm, rms_norm_eps)?,
+ n_head: head_count,
+ n_kv_head: head_count_kv,
+ head_dim,
+ neg_inf: neg_inf.clone(),
+ kv_cache: None,
+ span_attn,
+ span_rot,
+ span_mlp,
+ });
+ }
+
+ let span = tracing::span!(tracing::Level::TRACE, "model");
+ let span_output = tracing::span!(tracing::Level::TRACE, "output");
+
+ Ok(Self {
+ tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
+ layers,
+ norm,
+ output,
+ masks: HashMap::new(),
+ span,
+ span_output,
+ })
+ }
+
+ fn mask(&mut self, t: usize, device: &Device) -> Result<Tensor> {
+ if let Some(mask) = self.masks.get(&t) {
+ Ok(mask.clone())
+ } else {
+ let mask: Vec<_> = (0..t)
+ .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
+ .collect();
+ let mask = Tensor::from_slice(&mask, (t, t), device)?;
+ self.masks.insert(t, mask.clone());
+ Ok(mask)
+ }
+ }
+
+ pub fn forward(&mut self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let (_b_sz, seq_len) = x.dims2()?;
+ let mask = if seq_len == 1 {
+ None
+ } else {
+ Some(self.mask(seq_len, x.device())?)
+ };
+ let _enter = self.span.enter();
+ let mut layer_in = self.tok_embeddings.forward(x)?;
+ for layer in self.layers.iter_mut() {
+ let x = layer_in;
+ let residual = &x;
+ let x = layer.attention_norm.forward(&x)?;
+ let attn = layer.forward_attn(&x, mask.as_ref(), index_pos)?;
+ let x = (attn + residual)?;
+
+ // MLP
+ let _enter = layer.span_mlp.enter();
+ let residual = &x;
+ let x = layer.ffn_norm.forward(&x)?;
+ let x = layer.mlp.forward(&x)?;
+ let x = (x + residual)?;
+ layer_in = x
+ }
+ let x = self.norm.forward(&layer_in)?;
+ let x = x.i((.., seq_len - 1, ..))?;
+ let _enter = self.span_output.enter();
+ self.output.forward(&x)
+ }
+}