diff options
author | v-espitalier <125037408+v-espitalier@users.noreply.github.com> | 2024-06-29 11:49:15 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-06-29 11:49:15 +0200 |
commit | e27aac0a062a6de125e2984eacdb7841664e86fd (patch) | |
tree | a0752c27f75da6c7312abb2a2219d9179e89d8db /candle-transformers | |
parent | a3dd87f15e3656ee2bec4820ae72a2a4e5662b40 (diff) | |
download | candle-e27aac0a062a6de125e2984eacdb7841664e86fd.tar.gz candle-e27aac0a062a6de125e2984eacdb7841664e86fd.tar.bz2 candle-e27aac0a062a6de125e2984eacdb7841664e86fd.zip |
Add DINOv2Reg4 + PlantCLEF2024 (#2293)
* Add: DINOv2Reg4 with PlantCLEF2024 weights and example ( See https://arxiv.org/abs/2309.16588 and https://zenodo.org/records/10848263 )
* Remove extra files + update README to download them + remove extra lines
* minor fix (README remove extra spaces)
* minor fix (README: Fix image url)
* Modif: Add back interpolate_pos_encoding() + fix when no interpolation + remove extra comments + Update README ( source image changed and so the predictions )
* Fix: Improve code lisibility with '$ cargo clippy' and '$ cargo fmt'
* Another clippy fix.
---------
Co-authored-by: x-VEspit <vincent.espitalier@cirad.fr>
Co-authored-by: laurent <laurent.mazare@gmail.com>
Diffstat (limited to 'candle-transformers')
-rw-r--r-- | candle-transformers/src/models/dinov2reg4.rs | 281 | ||||
-rw-r--r-- | candle-transformers/src/models/mod.rs | 1 |
2 files changed, 282 insertions, 0 deletions
diff --git a/candle-transformers/src/models/dinov2reg4.rs b/candle-transformers/src/models/dinov2reg4.rs new file mode 100644 index 00000000..6bbe2e24 --- /dev/null +++ b/candle-transformers/src/models/dinov2reg4.rs @@ -0,0 +1,281 @@ +use candle::{IndexOp, Result, Tensor, D}; +use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder}; + +const IMG_SIZE: usize = 518; +const PATCH_SIZE: usize = 14; +const NUM_CLASSES: usize = 7806; // PlantCLEF2024 DINOv2 (https://zenodo.org/records/10848263) + +fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> { + if bias { + candle_nn::linear(in_dim, out_dim, vb) + } else { + candle_nn::linear_no_bias(in_dim, out_dim, vb) + } +} + +#[derive(Debug)] +struct Attention { + qkv: Linear, + proj: Linear, + num_heads: usize, + scale: f64, +} + +impl Attention { + fn new( + vb: VarBuilder, + dim: usize, + num_heads: usize, + qkv_bias: bool, + proj_bias: bool, + ) -> Result<Self> { + let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?; + let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?; + let scale = 1. / ((dim / num_heads) as f64).sqrt(); + Ok(Self { + qkv, + proj, + num_heads, + scale, + }) + } +} + +impl Module for Attention { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let (b, n, c) = xs.dims3()?; + let qkv = self + .qkv + .forward(xs)? + .reshape((b, n, 3, self.num_heads, c / self.num_heads))? + .transpose(1, 2)? // 02134 + .transpose(0, 1)? // 20134 + .transpose(2, 3)?; // 20314 + let q = (qkv.i(0)? * self.scale)?; + let k = qkv.i(1)?.contiguous()?; + let v = qkv.i(2)?.contiguous()?; + let attn = candle_nn::ops::softmax(&q.matmul(&k.t()?)?, D::Minus1)?; + let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?; + self.proj.forward(&attn) + } +} + +#[derive(Debug)] +struct LayerScale { + gamma: Tensor, +} + +impl LayerScale { + fn new(vb: VarBuilder, dim: usize) -> Result<Self> { + let gamma = vb.get(dim, "gamma")?; + Ok(Self { gamma }) + } +} + +impl Module for LayerScale { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + xs.broadcast_mul(&self.gamma) + } +} + +#[derive(Debug)] +struct Mlp { + fc1: Linear, + fc2: Linear, +} + +impl Mlp { + fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> { + let out_features = in_features; + let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?; + let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?; + Ok(Self { fc1, fc2 }) + } +} + +impl Module for Mlp { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let xs = self.fc1.forward(xs)?.gelu()?; + self.fc2.forward(&xs) + } +} + +#[derive(Debug)] +struct Block { + norm1: LayerNorm, + attn: Attention, + ls1: LayerScale, + norm2: LayerNorm, + mlp: Mlp, + ls2: LayerScale, +} + +impl Block { + fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result<Self> { + let norm1 = layer_norm(dim, 1e-6, vb.pp("norm1"))?; + let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true)?; + let ls1 = LayerScale::new(vb.pp("ls1"), dim)?; + let norm2 = layer_norm(dim, 1e-6, vb.pp("norm2"))?; + let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?; + let ls2 = LayerScale::new(vb.pp("ls2"), dim)?; + Ok(Self { + norm1, + attn, + ls1, + norm2, + mlp, + ls2, + }) + } +} + +impl Module for Block { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let residual = xs; + let xs = self + .ls1 + .forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?; + let xs = (xs + residual)?; + let residual = &xs; + let xs = self + .ls2 + .forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?; + xs + residual + } +} + +#[derive(Debug)] +struct PatchEmbed { + proj: candle_nn::Conv2d, + patch_size: (usize, usize), + num_patches: usize, +} + +impl PatchEmbed { + fn new( + vb: VarBuilder, + img_size: usize, + patch_size: usize, + in_chans: usize, + embed_dim: usize, + ) -> Result<Self> { + let config = candle_nn::Conv2dConfig { + stride: patch_size, + ..Default::default() + }; + let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?; + let num_patches = (img_size / patch_size) * (img_size / patch_size); + Ok(Self { + proj, + patch_size: (patch_size, patch_size), + num_patches, + }) + } +} + +impl Module for PatchEmbed { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let (_b, _c, h, w) = xs.dims4()?; + let (patch_h, patch_w) = self.patch_size; + if (h % patch_h) != 0 { + candle::bail!("image height {h} is not a multiple of patch height {patch_h}") + } + if (w % patch_w) != 0 { + candle::bail!("image width {w} is not a multiple of patch width {patch_w}") + } + let xs = self.proj.forward(xs)?; + let (b, c, h, w) = xs.dims4()?; + // flatten embeddings. + xs.reshape((b, c, h * w))?.transpose(1, 2) + } +} + +#[derive(Debug)] +pub struct DinoVisionTransformer { + patch_embed: PatchEmbed, + cls_token: Tensor, + reg_token: Tensor, + pos_embed: Tensor, + blocks: Vec<Block>, + norm: LayerNorm, + head: Linear, +} + +impl DinoVisionTransformer { + pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> { + let patch_embed = + PatchEmbed::new(vb.pp("patch_embed"), IMG_SIZE, PATCH_SIZE, 3, embed_dim)?; + let cls_token = vb.get((1, 1, embed_dim), "cls_token")?; + let reg_token = vb.get((1, 4, embed_dim), "reg_token")?; + let pos_embed = vb.get((1, patch_embed.num_patches, embed_dim), "pos_embed")?; + let head = linear(vb.pp("head"), embed_dim, NUM_CLASSES, true)?; + let norm = layer_norm(embed_dim, 1e-6, vb.pp("norm"))?; + let vb_b = vb.pp("blocks"); + let blocks = (0..depth) + .map(|i| Block::new(vb_b.pp(&i.to_string()), embed_dim, num_heads)) + .collect::<Result<Vec<_>>>()?; + Ok(Self { + patch_embed, + cls_token, + reg_token, + pos_embed, + blocks, + norm, + head, + }) + } + + fn interpolate_pos_encoding(&self, xs: &Tensor, w: usize, h: usize) -> Result<Tensor> { + let npatch = xs.dim(1)? - 1; + let n = self.pos_embed.dim(1)? - 1; + let sqrt_n = (n as f64).sqrt(); + if npatch == n && w == h { + return Ok(self.pos_embed.clone()); + } + let patch_pos_embed = &self.pos_embed; + let dim = xs.dim(D::Minus1)?; + let (w0, h0) = ((w / PATCH_SIZE) as f64 + 0.1, (h / PATCH_SIZE) as f64 + 0.1); + let patch_pos_embed = patch_pos_embed + .reshape((1, sqrt_n as usize, sqrt_n as usize, dim))? + .transpose(2, 3)? + .transpose(1, 2)?; + // This uses bicubic interpolation in the original implementation. + let patch_pos_embed = patch_pos_embed.upsample_nearest2d(h0 as usize, w0 as usize)?; + let el_count = patch_pos_embed.shape().elem_count(); + patch_pos_embed + .transpose(1, 2)? + .transpose(2, 3)? + .reshape((1, el_count / dim, dim)) + } + + fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> { + let (_b, _nc, w, h) = xs.dims4()?; + if (w != IMG_SIZE) || (h != IMG_SIZE) { + panic!("Error: The input tensor should have the shape: Bx3x518x518."); + } + let xs = self.patch_embed.forward(xs)?; + let xs = (&xs + &self.interpolate_pos_encoding(&xs, w, h)?)?; + let xs = Tensor::cat(&[&self.cls_token, &self.reg_token, &xs], 1)?; + Ok(xs) + } +} + +impl Module for DinoVisionTransformer { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let mut xs = self.prepare_tokens_with_mask(xs)?; + for blk in self.blocks.iter() { + xs = blk.forward(&xs)? + } + let xs = self.norm.forward(&xs)?; + let xs_norm_clstoken = xs.i((.., 0))?; + self.head.forward(&xs_norm_clstoken) + } +} + +pub fn vit_small(vb: VarBuilder) -> Result<DinoVisionTransformer> { + DinoVisionTransformer::new(vb, 12, 384, 6) +} + +pub fn vit_base(vb: VarBuilder) -> Result<DinoVisionTransformer> { + DinoVisionTransformer::new(vb, 12, 768, 12) +} diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs index 89ae0f8a..2908d345 100644 --- a/candle-transformers/src/models/mod.rs +++ b/candle-transformers/src/models/mod.rs @@ -8,6 +8,7 @@ pub mod convmixer; pub mod convnext; pub mod depth_anything_v2; pub mod dinov2; +pub mod dinov2reg4; pub mod distilbert; pub mod efficientnet; pub mod efficientvit; |