diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-07-24 12:36:02 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-07-24 12:36:02 +0100 |
commit | 5a26cba7339e326eaca7a10ee99f6af948da2677 (patch) | |
tree | e7ce4f569f3d620bd73c0bbb00198031345723b2 /candle-wasm-examples/llama2-c | |
parent | 550a13a5472fd3aa3975c2453eff4bff6ac1d0bd (diff) | |
download | candle-5a26cba7339e326eaca7a10ee99f6af948da2677.tar.gz candle-5a26cba7339e326eaca7a10ee99f6af948da2677.tar.bz2 candle-5a26cba7339e326eaca7a10ee99f6af948da2677.zip |
Re-organize the wasm examples (#231)
* Move the whisper example.
* More renaming.
* Add llama2 as a new wasm example.
* Live generation.
* More of the llama wasm example.
* Formatting.
Diffstat (limited to 'candle-wasm-examples/llama2-c')
-rw-r--r-- | candle-wasm-examples/llama2-c/Cargo.toml | 51 | ||||
-rw-r--r-- | candle-wasm-examples/llama2-c/index.html | 17 | ||||
-rw-r--r-- | candle-wasm-examples/llama2-c/src/app.rs | 188 | ||||
-rw-r--r-- | candle-wasm-examples/llama2-c/src/bin/app.rs | 4 | ||||
-rw-r--r-- | candle-wasm-examples/llama2-c/src/bin/worker.rs | 4 | ||||
-rw-r--r-- | candle-wasm-examples/llama2-c/src/lib.rs | 30 | ||||
-rw-r--r-- | candle-wasm-examples/llama2-c/src/model.rs | 321 | ||||
-rw-r--r-- | candle-wasm-examples/llama2-c/src/worker.rs | 353 |
8 files changed, 968 insertions, 0 deletions
diff --git a/candle-wasm-examples/llama2-c/Cargo.toml b/candle-wasm-examples/llama2-c/Cargo.toml new file mode 100644 index 00000000..22d9cfe8 --- /dev/null +++ b/candle-wasm-examples/llama2-c/Cargo.toml @@ -0,0 +1,51 @@ +[package] +name = "candle-wasm-example-llama2" +version = "0.1.0" +edition = "2021" + +description = "Wasm example for the candle ML framework." +repository = "https://github.com/LaurentMazare/candle" +keywords = ["blas", "tensor", "machine-learning"] +categories = ["science"] +license = "MIT/Apache-2.0" +readme = "README.md" + +[dependencies] +candle = { path = "../../candle-core" } +candle-nn = { path = "../../candle-nn" } +num-traits = { workspace = true } + +# App crates. +anyhow = { workspace = true } +byteorder = { workspace = true } +log = { workspace = true } +rand = { workspace = true } +serde = { workspace = true } +serde_json = { workspace = true } + +# Wasm specific crates. +getrandom = { version = "0.2", features = ["js"] } +gloo = "0.8" +js-sys = "0.3.64" +wasm-bindgen = "0.2.87" +wasm-bindgen-futures = "0.4.37" +wasm-logger = "0.2" +yew-agent = "0.2.0" +yew = { version = "0.20.0", features = ["csr"] } + +[dependencies.web-sys] +version = "0.3.64" +features = [ + 'Blob', + 'Document', + 'Element', + 'HtmlElement', + 'Node', + 'Window', + 'Request', + 'RequestCache', + 'RequestInit', + 'RequestMode', + 'Response', + 'Performance', +] diff --git a/candle-wasm-examples/llama2-c/index.html b/candle-wasm-examples/llama2-c/index.html new file mode 100644 index 00000000..e98e1ecb --- /dev/null +++ b/candle-wasm-examples/llama2-c/index.html @@ -0,0 +1,17 @@ +<!DOCTYPE html> +<html lang="en"> + <head> + <meta charset="utf-8" /> + <title>Welcome to Candle!</title> + + <link data-trunk rel="copy-file" href="tokenizer.bin" /> + <link data-trunk rel="copy-file" href="model.bin" /> + <link data-trunk rel="rust" href="Cargo.toml" data-bin="app" data-type="main" /> + <link data-trunk rel="rust" href="Cargo.toml" data-bin="worker" data-type="worker" /> + + <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300italic,700,700italic"> + <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.css"> + <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/milligram/1.4.1/milligram.css"> + </head> + <body></body> +</html> diff --git a/candle-wasm-examples/llama2-c/src/app.rs b/candle-wasm-examples/llama2-c/src/app.rs new file mode 100644 index 00000000..460ac053 --- /dev/null +++ b/candle-wasm-examples/llama2-c/src/app.rs @@ -0,0 +1,188 @@ +use crate::console_log; +use crate::worker::{ModelData, Worker, WorkerInput, WorkerOutput}; +use wasm_bindgen::prelude::*; +use wasm_bindgen_futures::JsFuture; +use yew::{html, Component, Context, Html}; +use yew_agent::{Bridge, Bridged}; + +async fn fetch_url(url: &str) -> Result<Vec<u8>, JsValue> { + use web_sys::{Request, RequestCache, RequestInit, RequestMode, Response}; + let window = web_sys::window().ok_or("window")?; + let mut opts = RequestInit::new(); + let opts = opts + .method("GET") + .mode(RequestMode::Cors) + .cache(RequestCache::NoCache); + + let request = Request::new_with_str_and_init(url, opts)?; + + let resp_value = JsFuture::from(window.fetch_with_request(&request)).await?; + + // `resp_value` is a `Response` object. + assert!(resp_value.is_instance_of::<Response>()); + let resp: Response = resp_value.dyn_into()?; + let data = JsFuture::from(resp.blob()?).await?; + let blob = web_sys::Blob::from(data); + let array_buffer = JsFuture::from(blob.array_buffer()).await?; + let data = js_sys::Uint8Array::new(&array_buffer).to_vec(); + Ok(data) +} + +pub enum Msg { + Run, + UpdateStatus(String), + SetModel(ModelData), + WorkerInMsg(WorkerInput), + WorkerOutMsg(Result<WorkerOutput, String>), +} + +pub struct CurrentDecode { + start_time: Option<f64>, +} + +pub struct App { + status: String, + generated: String, + current_decode: Option<CurrentDecode>, + worker: Box<dyn Bridge<Worker>>, +} + +async fn model_data_load() -> Result<ModelData, JsValue> { + let tokenizer = fetch_url("tokenizer.bin").await?; + let model = fetch_url("model.bin").await?; + console_log!("{}", model.len()); + Ok(ModelData { tokenizer, model }) +} + +fn performance_now() -> Option<f64> { + let window = web_sys::window()?; + let performance = window.performance()?; + Some(performance.now() / 1000.) +} + +impl Component for App { + type Message = Msg; + type Properties = (); + + fn create(ctx: &Context<Self>) -> Self { + let status = "loading weights".to_string(); + let cb = { + let link = ctx.link().clone(); + move |e| link.send_message(Self::Message::WorkerOutMsg(e)) + }; + let worker = Worker::bridge(std::rc::Rc::new(cb)); + Self { + status, + generated: String::new(), + current_decode: None, + worker, + } + } + + fn rendered(&mut self, ctx: &Context<Self>, first_render: bool) { + if first_render { + ctx.link().send_future(async { + match model_data_load().await { + Err(err) => { + let status = format!("{err:?}"); + Msg::UpdateStatus(status) + } + Ok(model_data) => Msg::SetModel(model_data), + } + }); + } + } + + fn update(&mut self, ctx: &Context<Self>, msg: Self::Message) -> bool { + match msg { + Msg::SetModel(md) => { + self.status = "weights loaded succesfully!".to_string(); + console_log!("loaded weights"); + self.worker.send(WorkerInput::ModelData(md)); + true + } + Msg::Run => { + if self.current_decode.is_some() { + self.status = "already generating some sample at the moment".to_string() + } else { + let start_time = performance_now(); + self.current_decode = Some(CurrentDecode { start_time }); + self.status = "generating...".to_string(); + self.generated.clear(); + ctx.link().send_message(Msg::WorkerInMsg(WorkerInput::Run)) + } + true + } + Msg::WorkerOutMsg(output) => { + match output { + Ok(WorkerOutput::WeightsLoaded) => self.status = "weights loaded!".to_string(), + Ok(WorkerOutput::GenerationDone(Err(err))) => { + self.status = format!("error in worker process: {err}"); + self.current_decode = None + } + Ok(WorkerOutput::GenerationDone(Ok(()))) => { + let dt = self.current_decode.as_ref().and_then(|current_decode| { + current_decode.start_time.and_then(|start_time| { + performance_now().map(|stop_time| stop_time - start_time) + }) + }); + self.status = match dt { + None => "generation succeeded!".to_string(), + Some(dt) => format!("generation succeeded in {:.2}s", dt), + }; + self.current_decode = None + } + Ok(WorkerOutput::Generated(token)) => self.generated.push_str(&token), + Err(err) => { + self.status = format!("error in worker {err:?}"); + } + } + true + } + Msg::WorkerInMsg(inp) => { + self.worker.send(inp); + true + } + Msg::UpdateStatus(status) => { + self.status = status; + true + } + } + } + + fn view(&self, ctx: &Context<Self>) -> Html { + html! { + <div> + <div><p>{"Running "} + <a href="https://github.com/karpathy/llama2.c" target="_blank">{"llama2.c"}</a> + {" in the browser using rust/wasm with "} + <a href="https://github.com/LaurentMazare/candle" target="_blank">{"candle!"}</a> + </p> + <p>{"Once the weights have loaded, click on the run button to start generating content."} + </p> + </div> + <button class="button" onclick={ctx.link().callback(move |_| Msg::Run)}> { "run" }</button> + <br/ > + <h3> + {&self.status} + </h3> + { + if self.current_decode.is_some() { + html! { <progress id="progress-bar" aria-label="generating…"></progress> } + } else { + html! {} + } + } + <blockquote> + <p> { self.generated.chars().map(|c| + if c == '\r' || c == '\n' { + html! { <br/> } + } else { + html! { {c} } + }).collect::<Html>() + } </p> + </blockquote> + </div> + } + } +} diff --git a/candle-wasm-examples/llama2-c/src/bin/app.rs b/candle-wasm-examples/llama2-c/src/bin/app.rs new file mode 100644 index 00000000..3428f6ff --- /dev/null +++ b/candle-wasm-examples/llama2-c/src/bin/app.rs @@ -0,0 +1,4 @@ +fn main() { + wasm_logger::init(wasm_logger::Config::new(log::Level::Trace)); + yew::Renderer::<candle_wasm_example_llama2::App>::new().render(); +} diff --git a/candle-wasm-examples/llama2-c/src/bin/worker.rs b/candle-wasm-examples/llama2-c/src/bin/worker.rs new file mode 100644 index 00000000..d8ca2172 --- /dev/null +++ b/candle-wasm-examples/llama2-c/src/bin/worker.rs @@ -0,0 +1,4 @@ +use yew_agent::PublicWorker; +fn main() { + candle_wasm_example_llama2::Worker::register(); +} diff --git a/candle-wasm-examples/llama2-c/src/lib.rs b/candle-wasm-examples/llama2-c/src/lib.rs new file mode 100644 index 00000000..61154d04 --- /dev/null +++ b/candle-wasm-examples/llama2-c/src/lib.rs @@ -0,0 +1,30 @@ +#![allow(dead_code)] + +pub const WITH_TIMER: bool = true; + +struct Timer { + label: &'static str, +} + +impl Timer { + fn new(label: &'static str) -> Self { + if WITH_TIMER { + web_sys::console::time_with_label(label); + } + Self { label } + } +} + +impl Drop for Timer { + fn drop(&mut self) { + if WITH_TIMER { + web_sys::console::time_end_with_label(self.label) + } + } +} + +mod app; +mod model; +mod worker; +pub use app::App; +pub use worker::Worker; diff --git a/candle-wasm-examples/llama2-c/src/model.rs b/candle-wasm-examples/llama2-c/src/model.rs new file mode 100644 index 00000000..13f939db --- /dev/null +++ b/candle-wasm-examples/llama2-c/src/model.rs @@ -0,0 +1,321 @@ +use candle::{DType, Device, IndexOp, Result, Tensor, D}; +use candle_nn::{Embedding, Linear, VarBuilder}; +use std::collections::HashMap; +use std::sync::{Arc, Mutex}; + +#[derive(Debug, Clone)] +pub struct Config { + pub dim: usize, // transformer dimension + pub hidden_dim: usize, // for ffn layers + pub n_layers: usize, // number of layers + pub n_heads: usize, // number of query heads + pub n_kv_heads: usize, // number of key/value heads (can be < query heads because of multiquery) + pub vocab_size: usize, // vocabulary size, usually 256 (byte-level) + pub seq_len: usize, // max sequence length + pub norm_eps: f64, +} + +#[derive(Clone)] +pub struct Cache { + masks: Arc<Mutex<HashMap<usize, Tensor>>>, + pub use_kv_cache: bool, + #[allow(clippy::type_complexity)] + kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>, + cos: Tensor, + sin: Tensor, + device: Device, +} + +impl Cache { + pub fn new(use_kv_cache: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> { + let freq_cis_real = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")?; + let freq_cis_imag = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")?; + let cos = freq_cis_real.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?; + let sin = freq_cis_imag.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?; + Ok(Self { + masks: Arc::new(Mutex::new(HashMap::new())), + use_kv_cache, + kvs: Arc::new(Mutex::new(vec![None; cfg.n_layers])), + cos, + sin, + device: vb.device().clone(), + }) + } + + fn mask(&self, t: usize) -> Result<Tensor> { + let mut masks = self.masks.lock().unwrap(); + if let Some(mask) = masks.get(&t) { + Ok(mask.clone()) + } else { + // TODO: If we support bool or u8 tensors, this would be better. + let mask: Vec<_> = (0..t) + .flat_map(|i| (0..t).map(move |j| u32::from(j > i))) + .collect(); + let mask = Tensor::from_slice(&mask, (t, t), &self.device)?; + masks.insert(t, mask.clone()); + Ok(mask) + } + } +} + +fn silu(xs: &Tensor) -> Result<Tensor> { + xs / (xs.neg()?.exp()? + 1.0)? +} + +fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> { + let weight = vb.get((size2, size1), "weight")?; + Ok(Linear::new(weight, None)) +} + +fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> { + let embeddings = vb.get((cfg.vocab_size, cfg.dim), "weight")?; + Ok(Embedding::new(embeddings, cfg.dim)) +} + +struct RmsNorm { + scale: Tensor, + eps: f64, +} + +impl RmsNorm { + fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> { + let scale = vb.get(size, "weight")?; + Ok(Self { scale, eps }) + } + + fn forward(&self, x: &Tensor) -> Result<Tensor> { + let (b_sz, seq_len, hidden_size) = x.dims3()?; + let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?; + let norm_x = norm_x.broadcast_as((b_sz, seq_len, hidden_size))?; + let x_normed = (x / (norm_x + self.eps)?.sqrt()?)?; + let size = self.scale.dims1()?; + let scale = self + .scale + .to_dtype(DType::F32)? + .broadcast_as((b_sz, seq_len, size))?; + let x = (scale * x_normed)?; + Ok(x) + } +} + +struct CausalSelfAttention { + q_proj: Linear, + k_proj: Linear, + v_proj: Linear, + o_proj: Linear, + n_head: usize, + n_key_value_head: usize, + head_dim: usize, + cache: Cache, + max_seq_len: usize, +} + +impl CausalSelfAttention { + fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> { + let (b_sz, seq_len, h, n_embd) = x.dims4()?; + let cos = self.cache.cos.narrow(0, index_pos, seq_len)?; + let sin = self.cache.sin.narrow(0, index_pos, seq_len)?; + let cos = cos.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?; + let sin = sin.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?; + let x = x.reshape((b_sz, seq_len, h, n_embd / 2, 2))?; + let x0 = x.narrow(D::Minus1, 0, 1)?; + let x1 = x.narrow(D::Minus1, 1, 1)?; + let dst0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?; + let dst1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?; + let rope = Tensor::cat(&[&dst0, &dst1], D::Minus1)?.reshape((b_sz, seq_len, h, n_embd))?; + Ok(rope) + } + + fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> { + let (b_sz, seq_len, n_embd) = x.dims3()?; + let q = self.q_proj.forward(x)?; + let k = self.k_proj.forward(x)?; + let v = self.v_proj.forward(x)?; + + let q = q.reshape((b_sz, seq_len, self.n_head, self.head_dim))?; + let k = k.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?; + let mut v = v.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?; + + let q = self.apply_rotary_emb(&q, index_pos)?; + let mut k = self.apply_rotary_emb(&k, index_pos)?; + + if self.cache.use_kv_cache { + let mut cache = self.cache.kvs.lock().unwrap(); + if let Some((cache_k, cache_v)) = &cache[block_idx] { + k = Tensor::cat(&[cache_k, &k], 1)?.contiguous()?; + v = Tensor::cat(&[cache_v, &v], 1)?.contiguous()?; + } + cache[block_idx] = Some((k.clone(), v.clone())) + } + + let k = self.repeat_kv(k)?; + let v = self.repeat_kv(v)?; + + let q = q.transpose(1, 2)?.contiguous()?; + let k = k.transpose(1, 2)?.contiguous()?; + let v = v.transpose(1, 2)?.contiguous()?; + + let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?; + let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?; + let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?; + let att = att.softmax(D::Minus1)?; + // Convert to contiguous as matmul doesn't support strided vs for now. + let y = att.matmul(&v.contiguous()?)?; + let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?; + let y = self.o_proj.forward(&y)?; + Ok(y) + } + + fn repeat_kv(&self, x: Tensor) -> Result<Tensor> { + let n_rep = self.n_head / self.n_key_value_head; + if n_rep == 1 { + Ok(x) + } else { + let (b_sz, seq_len, n_kv_head, head_dim) = x.dims4()?; + let x = x + .unsqueeze(3)? + .expand((b_sz, seq_len, n_kv_head, n_rep, head_dim))? + .reshape((b_sz, seq_len, n_kv_head * n_rep, head_dim))?; + Ok(x) + } + } + + fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> { + let size_in = cfg.dim; + let size_q = (cfg.dim / cfg.n_heads) * cfg.n_heads; + let size_kv = (cfg.dim / cfg.n_heads) * cfg.n_kv_heads; + let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?; + let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?; + let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?; + let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?; + Ok(Self { + q_proj, + k_proj, + v_proj, + o_proj, + n_head: cfg.n_heads, + n_key_value_head: cfg.n_kv_heads, + head_dim: cfg.dim / cfg.n_heads, + cache: cache.clone(), + max_seq_len: cfg.seq_len, + }) + } +} + +fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> { + let shape = mask.shape(); + let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?; + let m = mask.where_cond(&on_true, on_false)?; + Ok(m) +} + +struct Mlp { + c_fc1: Linear, + c_fc2: Linear, + c_proj: Linear, +} + +impl Mlp { + fn new(c_fc1: Linear, c_fc2: Linear, c_proj: Linear) -> Self { + Self { + c_fc1, + c_fc2, + c_proj, + } + } + + fn forward(&self, x: &Tensor) -> Result<Tensor> { + let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?; + self.c_proj.forward(&x) + } + + fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> { + let h_size = cfg.dim; + let i_size = cfg.hidden_dim; + let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?; + let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?; + let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?; + Ok(Self::new(c_fc1, c_fc2, c_proj)) + } +} + +struct Block { + rms_1: RmsNorm, + attn: CausalSelfAttention, + rms_2: RmsNorm, + mlp: Mlp, +} + +impl Block { + fn new(rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp) -> Self { + Self { + rms_1, + attn, + rms_2, + mlp, + } + } + + fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> { + let residual = x; + let x = self.rms_1.forward(x)?; + let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?; + let residual = &x; + let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?; + Ok(x) + } + + fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> { + let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?; + let mlp = Mlp::load(vb.pp("mlp"), cfg)?; + let input_layernorm = RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("input_layernorm"))?; + let post_attention_layernorm = + RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("post_attention_layernorm"))?; + Ok(Self::new( + input_layernorm, + attn, + post_attention_layernorm, + mlp, + )) + } +} + +pub struct Llama { + wte: Embedding, + blocks: Vec<Block>, + ln_f: RmsNorm, + lm_head: Linear, +} + +impl Llama { + fn new(wte: Embedding, blocks: Vec<Block>, ln_f: RmsNorm, lm_head: Linear) -> Self { + Self { + wte, + blocks, + ln_f, + lm_head, + } + } + + pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> { + let (_b_sz, seq_len) = x.dims2()?; + let mut x = self.wte.forward(x)?; + for (block_idx, block) in self.blocks.iter().enumerate() { + x = block.forward(&x, index_pos, block_idx)?; + } + let x = self.ln_f.forward(&x)?; + let x = x.i((.., seq_len - 1, ..))?; + let logits = self.lm_head.forward(&x)?; + logits.to_dtype(DType::F32) + } + + pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> { + let wte = embedding(cfg, vb.pp("model.embed_tokens"))?; + let lm_head = linear(cfg.dim, cfg.vocab_size, vb.pp("lm_head"))?; + let norm = RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("model.norm"))?; + let blocks: Vec<_> = (0..cfg.n_layers) + .map(|i| Block::load(vb.pp(&format!("model.layers.{i}")), cache, cfg).unwrap()) + .collect(); + Ok(Self::new(wte, blocks, norm, lm_head)) + } +} diff --git a/candle-wasm-examples/llama2-c/src/worker.rs b/candle-wasm-examples/llama2-c/src/worker.rs new file mode 100644 index 00000000..9b0351d6 --- /dev/null +++ b/candle-wasm-examples/llama2-c/src/worker.rs @@ -0,0 +1,353 @@ +use crate::model::{Cache, Config, Llama}; +use byteorder::{LittleEndian, ReadBytesExt}; +use candle::{DType, Device, IndexOp, Result, Shape, Tensor, D}; +use candle_nn::VarBuilder; +use rand::{distributions::Distribution, SeedableRng}; +use serde::{Deserialize, Serialize}; +use wasm_bindgen::prelude::*; +use yew_agent::{HandlerId, Public, WorkerLink}; + +#[wasm_bindgen] +extern "C" { + // Use `js_namespace` here to bind `console.log(..)` instead of just + // `log(..)` + #[wasm_bindgen(js_namespace = console)] + pub fn log(s: &str); +} + +#[macro_export] +macro_rules! console_log { + // Note that this is using the `log` function imported above during + // `bare_bones` + ($($t:tt)*) => ($crate::worker::log(&format_args!($($t)*).to_string())) +} + +// Communication to the worker happens through bincode, the model weights and configs are fetched +// on the main thread and transfered via the following structure. +#[derive(Serialize, Deserialize)] +pub struct ModelData { + pub tokenizer: Vec<u8>, + pub model: Vec<u8>, +} + +fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> { + let mut buf = [0u8; 4]; + r.read_exact(&mut buf)?; + Ok(i32::from_le_bytes(buf)) +} + +fn read_tensor<R: std::io::Read, S: Into<Shape>>( + r: &mut R, + shape: S, + dev: &Device, +) -> Result<Tensor> { + let shape = shape.into(); + let mut data_t = vec![0f32; shape.elem_count()]; + r.read_f32_into::<LittleEndian>(&mut data_t)?; + let tensor = Tensor::from_vec(data_t, shape, dev)?; + Ok(tensor) +} + +struct Tokenizer { + tokens: Vec<String>, +} + +impl Tokenizer { + fn from_reader<R: std::io::Read>(r: &mut R, c: &Config) -> Result<Self> { + let mut tokens = Vec::with_capacity(c.vocab_size); + for _token_index in 0..c.vocab_size { + let token_len = read_i32(r)?; + let mut token = vec![0u8; token_len as usize]; + r.read_exact(&mut token)?; + tokens.push(String::from_utf8_lossy(&token).into_owned()) + } + Ok(Self { tokens }) + } +} + +struct Model { + cache: Cache, + config: Config, + llama: Llama, + tokenizer: Tokenizer, +} + +pub struct LogitsProcessor { + rng: rand::rngs::StdRng, + temperature: Option<f64>, +} + +impl LogitsProcessor { + pub fn new(seed: u64, temperature: Option<f64>) -> Self { + Self { + rng: rand::rngs::StdRng::seed_from_u64(seed), + temperature, + } + } + + pub fn sample(&mut self, logits: &Tensor) -> Result<u32> { + let logits = logits.to_dtype(DType::F32)?; + let next_token = if let Some(temperature) = self.temperature { + let prs = (&logits / temperature)?.softmax(D::Minus1)?; + let prs: Vec<f32> = prs.to_vec1()?; + let distr = + rand::distributions::WeightedIndex::new(prs).map_err(candle::Error::wrap)?; + distr.sample(&mut self.rng) as u32 + } else { + let logits_v: Vec<f32> = logits.to_vec1()?; + logits_v + .iter() + .enumerate() + .max_by(|(_, u), (_, v)| u.total_cmp(v)) + .map(|(i, _)| i as u32) + .unwrap() + }; + Ok(next_token) + } +} + +impl Model { + fn run(&self, link: &WorkerLink<Worker>, id: HandlerId) -> Result<()> { + let dev = Device::Cpu; + let mut logits_processor = LogitsProcessor::new(299792458, None); + let mut index_pos = 0; + let mut tokens = vec![1u32]; + + for index in 0..self.config.seq_len - 10 { + let context_size = if self.cache.use_kv_cache && index > 0 { + 1 + } else { + tokens.len() + }; + let ctxt = &tokens[tokens.len().saturating_sub(context_size)..]; + let input = Tensor::new(ctxt, &dev)?.unsqueeze(0)?; + let logits = self.llama.forward(&input, index_pos)?; + let logits = logits.squeeze(0)?; + index_pos += ctxt.len(); + + let next_token = logits_processor.sample(&logits)?; + tokens.push(next_token); + let token = self.tokenizer.tokens[next_token as usize].clone(); + link.respond(id, Ok(WorkerOutput::Generated(token))); + } + Ok(()) + } +} + +impl Config { + fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> { + let dim = read_i32(r)? as usize; + let hidden_dim = read_i32(r)? as usize; + let n_layers = read_i32(r)? as usize; + let n_heads = read_i32(r)? as usize; + let n_kv_heads = read_i32(r)? as usize; + let vocab_size = read_i32(r)? as usize; + let seq_len = read_i32(r)? as usize; + Ok(Self { + dim, + hidden_dim, + n_layers, + n_heads, + n_kv_heads, + vocab_size, + seq_len, + norm_eps: 1e-5, + }) + } + + pub fn head_size(&self) -> usize { + self.dim / self.n_heads + } +} + +struct TransformerWeights { + // token embedding table + token_embedding_table: Tensor, // (vocab_size, dim) + // weights for rmsnorms + rms_att_weight: Tensor, // (layer, dim) rmsnorm weights + rms_ffn_weight: Tensor, // (layer, dim) + // weights for matmuls + wq: Tensor, // (layer, dim, dim) + wk: Tensor, // (layer, dim, dim) + wv: Tensor, // (layer, dim, dim) + wo: Tensor, // (layer, dim, dim) + // weights for ffn + w1: Tensor, // (layer, hidden_dim, dim) + w2: Tensor, // (layer, dim, hidden_dim) + w3: Tensor, // (layer, hidden_dim, dim) + // final rmsnorm + rms_final_weight: Tensor, // (dim,) + // freq_cis for RoPE relatively positional embeddings + freq_cis_real: Tensor, // (seq_len, head_size/2) + freq_cis_imag: Tensor, // (seq_len, head_size/2) +} + +impl TransformerWeights { + fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> { + let token_embedding_table = read_tensor(r, (c.vocab_size, c.dim), dev)?; + let rms_att_weight = read_tensor(r, (c.n_layers, c.dim), dev)?; + let wq = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?; + let wk = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?; + let wv = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?; + let wo = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?; + let rms_ffn_weight = read_tensor(r, (c.n_layers, c.dim), dev)?; + let w1 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?; + let w2 = read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?; + let w3 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?; + let rms_final_weight = read_tensor(r, c.dim, dev)?; + let head_size = c.head_size(); + let freq_cis_real = read_tensor(r, (c.seq_len, head_size / 2), dev)?; + let freq_cis_imag = read_tensor(r, (c.seq_len, head_size / 2), dev)?; + Ok(Self { + token_embedding_table, + rms_att_weight, + wq, + wk, + wv, + wo, + rms_ffn_weight, + w1, + w2, + w3, + rms_final_weight, + freq_cis_real, + freq_cis_imag, + }) + } + + fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> { + let mut ws = std::collections::HashMap::new(); + let mut insert = |name: &str, t: Tensor| { + ws.insert(name.to_string(), t); + }; + insert("rot.freq_cis_real", self.freq_cis_real.clone()); + insert("rot.freq_cis_imag", self.freq_cis_imag.clone()); + insert( + "model.embed_tokens.weight", + self.token_embedding_table.clone(), + ); + insert("lm_head.weight", self.token_embedding_table.clone()); + insert("model.norm.weight", self.rms_final_weight.clone()); + for layer in 0..cfg.n_layers { + ws.insert( + format!("model.layers.{layer}.self_attn.q_proj.weight"), + self.wq.i(layer)?, + ); + ws.insert( + format!("model.layers.{layer}.self_attn.k_proj.weight"), + self.wk.i(layer)?, + ); + ws.insert( + format!("model.layers.{layer}.self_attn.v_proj.weight"), + self.wv.i(layer)?, + ); + ws.insert( + format!("model.layers.{layer}.self_attn.o_proj.weight"), + self.wo.i(layer)?, + ); + ws.insert( + format!("model.layers.{layer}.mlp.gate_proj.weight"), + self.w1.i(layer)?, + ); + ws.insert( + format!("model.layers.{layer}.mlp.down_proj.weight"), + self.w2.i(layer)?, + ); + ws.insert( + format!("model.layers.{layer}.mlp.up_proj.weight"), + self.w3.i(layer)?, + ); + ws.insert( + format!("model.layers.{layer}.input_layernorm.weight"), + self.rms_att_weight.i(layer)?, + ); + ws.insert( + format!("model.layers.{layer}.post_attention_layernorm.weight"), + self.rms_ffn_weight.i(layer)?, + ); + } + let vb = VarBuilder::from_tensors(ws, DType::F32, device); + Ok(vb) + } +} + +impl Model { + fn load(md: ModelData) -> Result<Self> { + let dev = Device::Cpu; + let mut model = std::io::Cursor::new(md.model); + let config = Config::from_reader(&mut model)?; + let weights = TransformerWeights::from_reader(&mut model, &config, &dev)?; + let vb = weights.var_builder(&config, &dev)?; + let cache = Cache::new(true, &config, vb.pp("rot"))?; + let llama = Llama::load(vb, &cache, &config)?; + let mut tokenizer = std::io::Cursor::new(md.tokenizer); + let tokenizer = Tokenizer::from_reader(&mut tokenizer, &config)?; + Ok(Self { + cache, + config, + llama, + tokenizer, + }) + } +} + +pub struct Worker { + link: WorkerLink<Self>, + model: Option<Model>, +} + +#[derive(Serialize, Deserialize)] +pub enum WorkerInput { + ModelData(ModelData), + Run, +} + +#[derive(Serialize, Deserialize)] +pub enum WorkerOutput { + Generated(String), + GenerationDone(std::result::Result<(), String>), + WeightsLoaded, +} + +impl yew_agent::Worker for Worker { + type Input = WorkerInput; + type Message = (); + type Output = std::result::Result<WorkerOutput, String>; + type Reach = Public<Self>; + + fn create(link: WorkerLink<Self>) -> Self { + Self { link, model: None } + } + + fn update(&mut self, _msg: Self::Message) { + // no messaging + } + + fn handle_input(&mut self, msg: Self::Input, id: HandlerId) { + let output = match msg { + WorkerInput::ModelData(md) => match Model::load(md) { + Ok(model) => { + self.model = Some(model); + Ok(WorkerOutput::WeightsLoaded) + } + Err(err) => Err(format!("model creation error {err:?}")), + }, + WorkerInput::Run => match &self.model { + None => Err("model has not been set yet".to_string()), + Some(model) => { + let result = model.run(&self.link, id).map_err(|e| e.to_string()); + Ok(WorkerOutput::GenerationDone(result)) + } + }, + }; + self.link.respond(id, output); + } + + fn name_of_resource() -> &'static str { + "worker.js" + } + + fn resource_path_is_relative() -> bool { + true + } +} |