summaryrefslogtreecommitdiff
path: root/src/cpu_backend.rs
diff options
context:
space:
mode:
authorNicolas Patry <patry.nicolas@protonmail.com>2023-06-22 13:18:57 +0200
committerGitHub <noreply@github.com>2023-06-22 13:18:57 +0200
commit0689d625487b9df318cdd12c8481855df8851178 (patch)
tree0eaeae9a64e97656d78afdc8ce44f6ffb6f17a2b /src/cpu_backend.rs
parent87a37b3bf3b6fd5034269c10c21c8f91e0223eb0 (diff)
parent77712d4348a31fb2e8f9676421ed05f3b5c2292e (diff)
downloadcandle-0689d625487b9df318cdd12c8481855df8851178.tar.gz
candle-0689d625487b9df318cdd12c8481855df8851178.tar.bz2
candle-0689d625487b9df318cdd12c8481855df8851178.zip
Merge pull request #2 from LaurentMazare/matmul
Adding matmul.
Diffstat (limited to 'src/cpu_backend.rs')
-rw-r--r--src/cpu_backend.rs138
1 files changed, 138 insertions, 0 deletions
diff --git a/src/cpu_backend.rs b/src/cpu_backend.rs
index 01c17245..2c708389 100644
--- a/src/cpu_backend.rs
+++ b/src/cpu_backend.rs
@@ -1,5 +1,6 @@
use crate::storage::{BinaryOp, UnaryOp};
use crate::{DType, Error, Result, Shape, StridedIndex};
+use gemm::{gemm, Parallelism};
// TODO: Think about whether we would be better off with a dtype and
// a buffer as an owned slice of bytes.
@@ -17,6 +18,14 @@ impl CpuStorage {
}
}
+ pub fn as_slice<D: crate::WithDType>(&self) -> Result<&[D]> {
+ D::cpu_storage_as_slice(self)
+ }
+
+ pub fn as_mut_slice<D: crate::WithDType>(&mut self) -> Result<&mut [D]> {
+ D::cpu_storage_as_mut_slice(self)
+ }
+
pub(crate) fn affine_impl(
&self,
shape: &Shape,
@@ -97,6 +106,93 @@ impl CpuStorage {
}
}
+ pub(crate) fn matmul_impl(
+ &self,
+ rhs: &Self,
+ (b, m, n, k): (usize, usize, usize, usize),
+ lhs_stride: &[usize],
+ rhs_stride: &[usize],
+ ) -> Result<Self> {
+ let a_skip: usize = m * k;
+ let b_skip: usize = n * k;
+ let c_skip: usize = m * n;
+
+ let rank = lhs_stride.len();
+ let lhs_cs = lhs_stride[rank - 1];
+ let lhs_rs = lhs_stride[rank - 2];
+
+ let rhs_cs = rhs_stride[rank - 1];
+ let rhs_rs = rhs_stride[rank - 2];
+
+ if lhs_stride.len() > 2 {
+ let lhs_batch_stride = &lhs_stride[..rank - 2];
+ let rhs_batch_stride = &rhs_stride[..rank - 2];
+
+ if lhs_batch_stride != [a_skip] || rhs_batch_stride != [b_skip] {
+ // Temporary error before we support abitrary striding.
+ return Err(Error::UnexpectedStriding);
+ }
+ }
+
+ let mut dst = vec![0.0; b * m * n];
+
+ let dst_shape: Shape = (m, n).into();
+ let dst_strides = dst_shape.stride_contiguous();
+ let dst_rs = dst_strides[0];
+ let dst_cs = dst_strides[1];
+
+ for step in 0..b {
+ let lhs_p = &self.as_slice::<f32>()?[step * a_skip..];
+ let rhs_p = &rhs.as_slice::<f32>()?[step * b_skip..];
+ let dst_p = &mut dst[step * c_skip..];
+ unsafe {
+ gemm(
+ // m: usize,
+ m,
+ // n: usize,
+ n,
+ // k: usize,
+ k,
+ // dst: *mut T,
+ dst_p.as_mut_ptr(),
+ // dst_cs: isize,
+ dst_cs as isize,
+ // dst_rs: isize,
+ dst_rs as isize,
+ // read_dst: bool,
+ false,
+ // lhs: *const T,
+ lhs_p.as_ptr(),
+ // lhs_cs: isize,
+ lhs_cs as isize,
+ // lhs_rs: isize,
+ lhs_rs as isize,
+ // rhs: *const T,
+ rhs_p.as_ptr(),
+ // rhs_cs: isize,
+ rhs_cs as isize,
+ // rhs_rs: isize,
+ rhs_rs as isize,
+ // alpha: T,
+ 1.0,
+ // beta: T,
+ 1.0,
+ // conj_dst: bool,
+ false,
+ // conj_lhs: bool,
+ false,
+ // conj_rhs: bool,
+ true,
+ // parallelism: Parallelism
+ Parallelism::None,
+ )
+ }
+ }
+
+ let c = Self::F32(dst);
+ Ok(c)
+ }
+
pub(crate) fn ones_impl(shape: &Shape, dtype: DType) -> Self {
let elem_count = shape.elem_count();
match dtype {
@@ -125,3 +221,45 @@ impl CpuStorage {
}
}
}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+ use crate::{Device, Tensor};
+
+ #[test]
+ fn simple_matmul() -> Result<()> {
+ let data = vec![1.0f32, 2.0, 3.0, 4.0];
+ let a = Tensor::from_slice(&data, (2, 2), &Device::Cpu)?;
+ let data = vec![1.0f32, 2.0, 3.0, 4.0];
+ let b = Tensor::from_slice(&data, (2, 2), &Device::Cpu)?;
+
+ let c = a.matmul(&b)?;
+ assert_eq!(c.to_vec2::<f32>()?, &[&[7.0f32, 10.0], &[15.0, 22.0]]);
+
+ let data = vec![1.0f32, 2.0];
+ let a = Tensor::from_slice(&data, (2, 1), &Device::Cpu)?;
+ let data = vec![3.0f32, 4.0];
+ let b = Tensor::from_slice(&data, (1, 2), &Device::Cpu)?;
+ let c = a.matmul(&b)?;
+ assert_eq!(c.to_vec2::<f32>()?, &[&[3.0, 4.0], &[6.0, 8.0]]);
+
+ let data: Vec<_> = (0..6).map(|i| i as f32).collect();
+ let a = Tensor::from_slice(&data, (2, 3), &Device::Cpu)?;
+ let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect();
+ let b = Tensor::from_slice(&data, (3, 2), &Device::Cpu)?;
+ let c = a.matmul(&b)?;
+ assert_eq!(c.to_vec2::<f32>()?, &[&[16., 19.], &[52., 64.]]);
+
+ let data: Vec<_> = (0..12).map(|i| i as f32).collect();
+ let a = Tensor::from_slice(&data, (2, 2, 3), &Device::Cpu)?;
+ let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect();
+ let b = Tensor::from_slice(&data, (2, 3, 2), &Device::Cpu)?;
+ let c = a.matmul(&b)?;
+ assert_eq!(
+ c.to_vec3::<f32>()?,
+ &[&[&[16., 19.], &[52., 64.]], &[&[214., 235.], &[304., 334.]]]
+ );
+ Ok(())
+ }
+}