diff options
author | Nicolas Patry <patry.nicolas@protonmail.com> | 2023-06-22 13:18:57 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-06-22 13:18:57 +0200 |
commit | 0689d625487b9df318cdd12c8481855df8851178 (patch) | |
tree | 0eaeae9a64e97656d78afdc8ce44f6ffb6f17a2b /src/cpu_backend.rs | |
parent | 87a37b3bf3b6fd5034269c10c21c8f91e0223eb0 (diff) | |
parent | 77712d4348a31fb2e8f9676421ed05f3b5c2292e (diff) | |
download | candle-0689d625487b9df318cdd12c8481855df8851178.tar.gz candle-0689d625487b9df318cdd12c8481855df8851178.tar.bz2 candle-0689d625487b9df318cdd12c8481855df8851178.zip |
Merge pull request #2 from LaurentMazare/matmul
Adding matmul.
Diffstat (limited to 'src/cpu_backend.rs')
-rw-r--r-- | src/cpu_backend.rs | 138 |
1 files changed, 138 insertions, 0 deletions
diff --git a/src/cpu_backend.rs b/src/cpu_backend.rs index 01c17245..2c708389 100644 --- a/src/cpu_backend.rs +++ b/src/cpu_backend.rs @@ -1,5 +1,6 @@ use crate::storage::{BinaryOp, UnaryOp}; use crate::{DType, Error, Result, Shape, StridedIndex}; +use gemm::{gemm, Parallelism}; // TODO: Think about whether we would be better off with a dtype and // a buffer as an owned slice of bytes. @@ -17,6 +18,14 @@ impl CpuStorage { } } + pub fn as_slice<D: crate::WithDType>(&self) -> Result<&[D]> { + D::cpu_storage_as_slice(self) + } + + pub fn as_mut_slice<D: crate::WithDType>(&mut self) -> Result<&mut [D]> { + D::cpu_storage_as_mut_slice(self) + } + pub(crate) fn affine_impl( &self, shape: &Shape, @@ -97,6 +106,93 @@ impl CpuStorage { } } + pub(crate) fn matmul_impl( + &self, + rhs: &Self, + (b, m, n, k): (usize, usize, usize, usize), + lhs_stride: &[usize], + rhs_stride: &[usize], + ) -> Result<Self> { + let a_skip: usize = m * k; + let b_skip: usize = n * k; + let c_skip: usize = m * n; + + let rank = lhs_stride.len(); + let lhs_cs = lhs_stride[rank - 1]; + let lhs_rs = lhs_stride[rank - 2]; + + let rhs_cs = rhs_stride[rank - 1]; + let rhs_rs = rhs_stride[rank - 2]; + + if lhs_stride.len() > 2 { + let lhs_batch_stride = &lhs_stride[..rank - 2]; + let rhs_batch_stride = &rhs_stride[..rank - 2]; + + if lhs_batch_stride != [a_skip] || rhs_batch_stride != [b_skip] { + // Temporary error before we support abitrary striding. + return Err(Error::UnexpectedStriding); + } + } + + let mut dst = vec![0.0; b * m * n]; + + let dst_shape: Shape = (m, n).into(); + let dst_strides = dst_shape.stride_contiguous(); + let dst_rs = dst_strides[0]; + let dst_cs = dst_strides[1]; + + for step in 0..b { + let lhs_p = &self.as_slice::<f32>()?[step * a_skip..]; + let rhs_p = &rhs.as_slice::<f32>()?[step * b_skip..]; + let dst_p = &mut dst[step * c_skip..]; + unsafe { + gemm( + // m: usize, + m, + // n: usize, + n, + // k: usize, + k, + // dst: *mut T, + dst_p.as_mut_ptr(), + // dst_cs: isize, + dst_cs as isize, + // dst_rs: isize, + dst_rs as isize, + // read_dst: bool, + false, + // lhs: *const T, + lhs_p.as_ptr(), + // lhs_cs: isize, + lhs_cs as isize, + // lhs_rs: isize, + lhs_rs as isize, + // rhs: *const T, + rhs_p.as_ptr(), + // rhs_cs: isize, + rhs_cs as isize, + // rhs_rs: isize, + rhs_rs as isize, + // alpha: T, + 1.0, + // beta: T, + 1.0, + // conj_dst: bool, + false, + // conj_lhs: bool, + false, + // conj_rhs: bool, + true, + // parallelism: Parallelism + Parallelism::None, + ) + } + } + + let c = Self::F32(dst); + Ok(c) + } + pub(crate) fn ones_impl(shape: &Shape, dtype: DType) -> Self { let elem_count = shape.elem_count(); match dtype { @@ -125,3 +221,45 @@ impl CpuStorage { } } } + +#[cfg(test)] +mod tests { + use super::*; + use crate::{Device, Tensor}; + + #[test] + fn simple_matmul() -> Result<()> { + let data = vec![1.0f32, 2.0, 3.0, 4.0]; + let a = Tensor::from_slice(&data, (2, 2), &Device::Cpu)?; + let data = vec![1.0f32, 2.0, 3.0, 4.0]; + let b = Tensor::from_slice(&data, (2, 2), &Device::Cpu)?; + + let c = a.matmul(&b)?; + assert_eq!(c.to_vec2::<f32>()?, &[&[7.0f32, 10.0], &[15.0, 22.0]]); + + let data = vec![1.0f32, 2.0]; + let a = Tensor::from_slice(&data, (2, 1), &Device::Cpu)?; + let data = vec![3.0f32, 4.0]; + let b = Tensor::from_slice(&data, (1, 2), &Device::Cpu)?; + let c = a.matmul(&b)?; + assert_eq!(c.to_vec2::<f32>()?, &[&[3.0, 4.0], &[6.0, 8.0]]); + + let data: Vec<_> = (0..6).map(|i| i as f32).collect(); + let a = Tensor::from_slice(&data, (2, 3), &Device::Cpu)?; + let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect(); + let b = Tensor::from_slice(&data, (3, 2), &Device::Cpu)?; + let c = a.matmul(&b)?; + assert_eq!(c.to_vec2::<f32>()?, &[&[16., 19.], &[52., 64.]]); + + let data: Vec<_> = (0..12).map(|i| i as f32).collect(); + let a = Tensor::from_slice(&data, (2, 2, 3), &Device::Cpu)?; + let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect(); + let b = Tensor::from_slice(&data, (2, 3, 2), &Device::Cpu)?; + let c = a.matmul(&b)?; + assert_eq!( + c.to_vec3::<f32>()?, + &[&[&[16., 19.], &[52., 64.]], &[&[214., 235.], &[304., 334.]]] + ); + Ok(()) + } +} |