summaryrefslogtreecommitdiff
path: root/tests/tensor_tests.rs
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-06-21 21:37:54 +0100
committerGitHub <noreply@github.com>2023-06-21 21:37:54 +0100
commitdb35b310504ab97044b2c3826de72f9bccf86415 (patch)
tree710596156a4c026d4dd2ba804fab79b6cdafae3b /tests/tensor_tests.rs
parent7c317f9611c263f10d661b44151d3655a2fa3b90 (diff)
parent7c46de9584fd4315b84d3bc4c28cf1b2bad7785d (diff)
downloadcandle-db35b310504ab97044b2c3826de72f9bccf86415.tar.gz
candle-db35b310504ab97044b2c3826de72f9bccf86415.tar.bz2
candle-db35b310504ab97044b2c3826de72f9bccf86415.zip
Merge pull request #3 from LaurentMazare/cuda
Add Cuda support.
Diffstat (limited to 'tests/tensor_tests.rs')
-rw-r--r--tests/tensor_tests.rs10
1 files changed, 5 insertions, 5 deletions
diff --git a/tests/tensor_tests.rs b/tests/tensor_tests.rs
index fb2d84d9..81c2e801 100644
--- a/tests/tensor_tests.rs
+++ b/tests/tensor_tests.rs
@@ -2,7 +2,7 @@ use candle::{DType, Device, Result, Tensor};
#[test]
fn zeros() -> Result<()> {
- let tensor = Tensor::zeros((5, 2), DType::F32, Device::Cpu)?;
+ let tensor = Tensor::zeros((5, 2), DType::F32, &Device::Cpu)?;
let (dim1, dim2) = tensor.shape().r2()?;
assert_eq!(dim1, 5);
assert_eq!(dim2, 2);
@@ -11,7 +11,7 @@ fn zeros() -> Result<()> {
#[test]
fn add_mul() -> Result<()> {
- let tensor = Tensor::new(&[3f32, 1., 4.], Device::Cpu)?;
+ let tensor = Tensor::new(&[3f32, 1., 4.], &Device::Cpu)?;
let dim1 = tensor.shape().r1()?;
assert_eq!(dim1, 3);
let content: Vec<f32> = tensor.to_vec1()?;
@@ -28,7 +28,7 @@ fn add_mul() -> Result<()> {
#[test]
fn tensor_2d() -> Result<()> {
let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]];
- let tensor = Tensor::new(data, Device::Cpu)?;
+ let tensor = Tensor::new(data, &Device::Cpu)?;
let dims = tensor.shape().r2()?;
assert_eq!(dims, (2, 5));
let content: Vec<Vec<f32>> = tensor.to_vec2()?;
@@ -39,9 +39,9 @@ fn tensor_2d() -> Result<()> {
#[test]
fn binary_op() -> Result<()> {
let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]];
- let tensor = Tensor::new(data, Device::Cpu)?;
+ let tensor = Tensor::new(data, &Device::Cpu)?;
let data2 = &[[5f32, 5., 5., 5., 5.], [2., 1., 7., 8., 2.]];
- let tensor2 = Tensor::new(data2, Device::Cpu)?;
+ let tensor2 = Tensor::new(data2, &Device::Cpu)?;
let tensor = (&tensor + (&tensor * &tensor)? / (&tensor + &tensor2))?;
let dims = tensor.shape().r2()?;
assert_eq!(dims, (2, 5));