diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-06-21 21:37:54 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-06-21 21:37:54 +0100 |
commit | db35b310504ab97044b2c3826de72f9bccf86415 (patch) | |
tree | 710596156a4c026d4dd2ba804fab79b6cdafae3b /tests/tensor_tests.rs | |
parent | 7c317f9611c263f10d661b44151d3655a2fa3b90 (diff) | |
parent | 7c46de9584fd4315b84d3bc4c28cf1b2bad7785d (diff) | |
download | candle-db35b310504ab97044b2c3826de72f9bccf86415.tar.gz candle-db35b310504ab97044b2c3826de72f9bccf86415.tar.bz2 candle-db35b310504ab97044b2c3826de72f9bccf86415.zip |
Merge pull request #3 from LaurentMazare/cuda
Add Cuda support.
Diffstat (limited to 'tests/tensor_tests.rs')
-rw-r--r-- | tests/tensor_tests.rs | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/tests/tensor_tests.rs b/tests/tensor_tests.rs index fb2d84d9..81c2e801 100644 --- a/tests/tensor_tests.rs +++ b/tests/tensor_tests.rs @@ -2,7 +2,7 @@ use candle::{DType, Device, Result, Tensor}; #[test] fn zeros() -> Result<()> { - let tensor = Tensor::zeros((5, 2), DType::F32, Device::Cpu)?; + let tensor = Tensor::zeros((5, 2), DType::F32, &Device::Cpu)?; let (dim1, dim2) = tensor.shape().r2()?; assert_eq!(dim1, 5); assert_eq!(dim2, 2); @@ -11,7 +11,7 @@ fn zeros() -> Result<()> { #[test] fn add_mul() -> Result<()> { - let tensor = Tensor::new(&[3f32, 1., 4.], Device::Cpu)?; + let tensor = Tensor::new(&[3f32, 1., 4.], &Device::Cpu)?; let dim1 = tensor.shape().r1()?; assert_eq!(dim1, 3); let content: Vec<f32> = tensor.to_vec1()?; @@ -28,7 +28,7 @@ fn add_mul() -> Result<()> { #[test] fn tensor_2d() -> Result<()> { let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; - let tensor = Tensor::new(data, Device::Cpu)?; + let tensor = Tensor::new(data, &Device::Cpu)?; let dims = tensor.shape().r2()?; assert_eq!(dims, (2, 5)); let content: Vec<Vec<f32>> = tensor.to_vec2()?; @@ -39,9 +39,9 @@ fn tensor_2d() -> Result<()> { #[test] fn binary_op() -> Result<()> { let data = &[[3f32, 1., 4., 1., 5.], [2., 1., 7., 8., 2.]]; - let tensor = Tensor::new(data, Device::Cpu)?; + let tensor = Tensor::new(data, &Device::Cpu)?; let data2 = &[[5f32, 5., 5., 5., 5.], [2., 1., 7., 8., 2.]]; - let tensor2 = Tensor::new(data2, Device::Cpu)?; + let tensor2 = Tensor::new(data2, &Device::Cpu)?; let tensor = (&tensor + (&tensor * &tensor)? / (&tensor + &tensor2))?; let dims = tensor.shape().r2()?; assert_eq!(dims, (2, 5)); |