summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--candle-transformers/src/models/metavoice.rs72
-rw-r--r--candle-transformers/src/models/quantized_metavoice.rs18
2 files changed, 82 insertions, 8 deletions
diff --git a/candle-transformers/src/models/metavoice.rs b/candle-transformers/src/models/metavoice.rs
index 2eeb0713..43de594f 100644
--- a/candle-transformers/src/models/metavoice.rs
+++ b/candle-transformers/src/models/metavoice.rs
@@ -181,6 +181,7 @@ pub mod tokenizers {
pub end_of_text: usize,
pub offset: usize,
pub ranks: HashMap<Vec<u8>, Rank>,
+ span: tracing::Span,
}
impl BPE {
@@ -231,6 +232,7 @@ pub mod tokenizers {
end_of_text,
offset,
ranks,
+ span: tracing::span!(tracing::Level::TRACE, "bpe"),
})
}
@@ -310,6 +312,7 @@ pub mod tokenizers {
}
pub fn encode(&self, text: &str) -> Result<Vec<u32>> {
+ let _enter = self.span.enter();
let mut bpe_tokens: Vec<u32> = Vec::new();
for word in self.re.find_iter(text) {
let word = word.map_err(E::wrap)?;
@@ -426,6 +429,7 @@ pub mod gpt {
c_attn: Linear,
c_proj: Linear,
n_head: usize,
+ span: tracing::Span,
}
impl SelfAttention {
@@ -444,12 +448,14 @@ pub mod gpt {
c_attn,
c_proj,
n_head: cfg.n_head,
+ span: tracing::span!(tracing::Level::TRACE, "self-attn"),
})
}
}
impl Module for SelfAttention {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
let (b, t, c) = xs.dims3()?;
let c_x = xs
.apply(&self.c_attn)?
@@ -474,11 +480,13 @@ pub mod gpt {
Gelu {
c_fc: Linear,
c_proj: Linear,
+ span: tracing::Span,
},
Swiglu {
w1: Linear,
w3: Linear,
c_proj: Linear,
+ span: tracing::Span,
},
}
@@ -489,7 +497,11 @@ pub mod gpt {
NonLinearityType::Gelu => {
let c_fc = linear_b(cfg.n_embd, hidden_dim, cfg.bias, vb.pp("c_fc"))?;
let c_proj = linear_b(hidden_dim, cfg.n_embd, cfg.bias, vb.pp("c_proj"))?;
- Self::Gelu { c_fc, c_proj }
+ Self::Gelu {
+ c_fc,
+ c_proj,
+ span: tracing::span!(tracing::Level::TRACE, "mlp-gelu"),
+ }
}
NonLinearityType::Swiglu => {
let hidden_dim = (2 * hidden_dim) / 3;
@@ -502,7 +514,12 @@ pub mod gpt {
let w1 = linear_b(cfg.n_embd, hidden_dim, cfg.bias, vb.pp("w1"))?;
let w3 = linear_b(cfg.n_embd, hidden_dim, cfg.bias, vb.pp("w3"))?;
let c_proj = linear_b(hidden_dim, cfg.n_embd, cfg.bias, vb.pp("c_proj"))?;
- Self::Swiglu { w1, w3, c_proj }
+ Self::Swiglu {
+ w1,
+ w3,
+ c_proj,
+ span: tracing::span!(tracing::Level::TRACE, "mlp-swiglu"),
+ }
}
};
Ok(slf)
@@ -512,8 +529,17 @@ pub mod gpt {
impl Module for MLP {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
match self {
- Self::Gelu { c_fc, c_proj } => xs.apply(c_fc)?.gelu()?.apply(c_proj),
- Self::Swiglu { w1, w3, c_proj } => {
+ Self::Gelu { c_fc, c_proj, span } => {
+ let _enter = span.enter();
+ xs.apply(c_fc)?.gelu()?.apply(c_proj)
+ }
+ Self::Swiglu {
+ w1,
+ w3,
+ c_proj,
+ span,
+ } => {
+ let _enter = span.enter();
let w1 = xs.apply(w1)?;
let w3 = xs.apply(w3)?;
(w1.silu()? * w3)?.apply(c_proj)
@@ -528,6 +554,7 @@ pub mod gpt {
ln_2: Norm,
attn: SelfAttention,
mlp: MLP,
+ span: tracing::Span,
}
impl Block {
@@ -541,12 +568,14 @@ pub mod gpt {
ln_2,
attn,
mlp,
+ span: tracing::span!(tracing::Level::TRACE, "gpt-block"),
})
}
}
impl Module for Block {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
let xs = (xs + xs.apply(&self.ln_1)?.apply(&self.attn))?;
let xs = (&xs + xs.apply(&self.ln_2)?.apply(&self.mlp))?;
Ok(xs)
@@ -563,6 +592,7 @@ pub mod gpt {
lm_heads: Vec<Linear>,
cfg: Config,
dtype: DType,
+ span: tracing::Span,
}
impl Model {
@@ -598,6 +628,7 @@ pub mod gpt {
lm_heads,
cfg,
dtype: vb.dtype(),
+ span: tracing::span!(tracing::Level::TRACE, "gpt"),
})
}
@@ -606,6 +637,7 @@ pub mod gpt {
}
pub fn forward(&self, idx: &Tensor) -> Result<Vec<Tensor>> {
+ let _enter = self.span.enter();
let device = idx.device();
let (b, _num_hierarchies, t) = idx.dims3()?;
let pos = Tensor::arange(0u32, t as u32, device)?;
@@ -689,6 +721,7 @@ pub mod transformer {
w1: Linear,
w2: Linear,
w3: Linear,
+ span: tracing::Span,
}
impl FeedForward {
@@ -697,12 +730,18 @@ pub mod transformer {
let w1 = linear_b(cfg.dim, i_size, false, vb.pp("swiglu.w1"))?;
let w2 = linear_b(i_size, cfg.dim, false, vb.pp("w2"))?;
let w3 = linear_b(cfg.dim, i_size, false, vb.pp("swiglu.w3"))?;
- Ok(Self { w1, w2, w3 })
+ Ok(Self {
+ w1,
+ w2,
+ w3,
+ span: tracing::span!(tracing::Level::TRACE, "feed-forward"),
+ })
}
}
impl Module for FeedForward {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
let swiglu = (candle_nn::ops::silu(&xs.apply(&self.w1)?)? * xs.apply(&self.w3))?;
swiglu.apply(&self.w2)
}
@@ -718,6 +757,7 @@ pub mod transformer {
head_dim: usize,
n_head: usize,
kv_cache: Option<(Tensor, Tensor)>,
+ span: tracing::Span,
}
impl Attention {
@@ -736,10 +776,12 @@ pub mod transformer {
head_dim,
n_head: cfg.n_head,
kv_cache: None,
+ span: tracing::span!(tracing::Level::TRACE, "feed-forward"),
})
}
fn forward(&mut self, xs: &Tensor, _pos: usize, mask: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
let (b_sz, seqlen, _) = xs.dims3()?;
let qkv = xs.apply(&self.wqkv)?;
@@ -793,6 +835,7 @@ pub mod transformer {
feed_forward: FeedForward,
ffn_norm: RmsNorm,
attention_norm: RmsNorm,
+ span: tracing::Span,
}
impl Block {
@@ -806,10 +849,12 @@ pub mod transformer {
feed_forward,
ffn_norm,
attention_norm,
+ span: tracing::span!(tracing::Level::TRACE, "block"),
})
}
fn forward(&mut self, xs: &Tensor, pos: usize, mask: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
let hs = xs.apply(&self.attention_norm)?;
let hs = (xs + self.attention.forward(&hs, pos, mask))?;
&hs + hs.apply(&self.ffn_norm)?.apply(&self.feed_forward)
@@ -829,6 +874,7 @@ pub mod transformer {
norm: RmsNorm,
output: Linear,
spk_cond_mask: Tensor,
+ span: tracing::Span,
}
impl Model {
@@ -865,6 +911,7 @@ pub mod transformer {
norm,
output,
spk_cond_mask,
+ span: tracing::span!(tracing::Level::TRACE, "transformer"),
})
}
@@ -875,6 +922,7 @@ pub mod transformer {
}
pub fn forward(&mut self, xs: &Tensor, spk_emb: &Tensor, pos: usize) -> Result<Tensor> {
+ let _enter = self.span.enter();
let (_b_sz, seqlen) = xs.dims2()?;
let mask: Vec<_> = (0..seqlen)
.flat_map(|i| (0..seqlen).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
@@ -905,14 +953,19 @@ pub mod adapters {
// https://github.com/metavoiceio/metavoice-src/blob/9078234c496d76adbec06df789b6b04b1875f129/fam/llm/adapters/tilted_encodec.py
pub struct TiltedEncodec {
end_of_audio_token: u32,
+ span: tracing::Span,
}
impl TiltedEncodec {
pub fn new(end_of_audio_token: u32) -> Self {
- Self { end_of_audio_token }
+ Self {
+ end_of_audio_token,
+ span: tracing::span!(tracing::Level::TRACE, "tilted-encodec"),
+ }
}
pub fn decode(&self, tokens: &[Vec<u32>]) -> (Vec<u32>, Vec<Vec<u32>>) {
+ let _enter = self.span.enter();
let mut text_ids = vec![];
let mut extracted_audio_ids = vec![];
let mut min_audio_ids_len = usize::MAX;
@@ -941,14 +994,19 @@ pub mod adapters {
// https://github.com/metavoiceio/metavoice-src/blob/9078234c496d76adbec06df789b6b04b1875f129/fam/llm/adapters/flattened_encodec.py#L4
pub struct FlattenedInterleavedEncodec2Codebook {
end_of_audio_token: u32,
+ span: tracing::Span,
}
impl FlattenedInterleavedEncodec2Codebook {
pub fn new(end_of_audio_token: u32) -> Self {
- Self { end_of_audio_token }
+ Self {
+ end_of_audio_token,
+ span: tracing::span!(tracing::Level::TRACE, "encodec2codebook"),
+ }
}
pub fn decode(&self, tokens: &[u32]) -> (Vec<u32>, Vec<u32>, Vec<u32>) {
+ let _enter = self.span.enter();
let mut text_ids = vec![];
let mut audio_ids1 = vec![];
let mut audio_ids2 = vec![];
diff --git a/candle-transformers/src/models/quantized_metavoice.rs b/candle-transformers/src/models/quantized_metavoice.rs
index 16545150..84c0388c 100644
--- a/candle-transformers/src/models/quantized_metavoice.rs
+++ b/candle-transformers/src/models/quantized_metavoice.rs
@@ -14,6 +14,7 @@ pub mod transformer {
w1: Linear,
w2: Linear,
w3: Linear,
+ span: tracing::Span,
}
impl FeedForward {
@@ -22,12 +23,18 @@ pub mod transformer {
let w1 = linear_b(cfg.dim, i_size, false, vb.pp("swiglu.w1"))?;
let w2 = linear_b(i_size, cfg.dim, false, vb.pp("w2"))?;
let w3 = linear_b(cfg.dim, i_size, false, vb.pp("swiglu.w3"))?;
- Ok(Self { w1, w2, w3 })
+ Ok(Self {
+ w1,
+ w2,
+ w3,
+ span: tracing::span!(tracing::Level::TRACE, "feed-forward"),
+ })
}
}
impl Module for FeedForward {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
let swiglu = (candle_nn::ops::silu(&xs.apply(&self.w1)?)? * xs.apply(&self.w3))?;
swiglu.apply(&self.w2)
}
@@ -43,6 +50,7 @@ pub mod transformer {
head_dim: usize,
n_head: usize,
kv_cache: Option<(Tensor, Tensor)>,
+ span: tracing::Span,
}
impl Attention {
@@ -61,10 +69,12 @@ pub mod transformer {
head_dim,
n_head: cfg.n_head,
kv_cache: None,
+ span: tracing::span!(tracing::Level::TRACE, "attention"),
})
}
fn forward(&mut self, xs: &Tensor, _pos: usize, mask: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
let (b_sz, seqlen, _) = xs.dims3()?;
let qkv = xs.apply(&self.wqkv)?;
@@ -118,6 +128,7 @@ pub mod transformer {
feed_forward: FeedForward,
ffn_norm: RmsNorm,
attention_norm: RmsNorm,
+ span: tracing::Span,
}
impl Block {
@@ -131,10 +142,12 @@ pub mod transformer {
feed_forward,
ffn_norm,
attention_norm,
+ span: tracing::span!(tracing::Level::TRACE, "block"),
})
}
fn forward(&mut self, xs: &Tensor, pos: usize, mask: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
let hs = xs.apply(&self.attention_norm)?;
let hs = (xs + self.attention.forward(&hs, pos, mask))?;
&hs + hs.apply(&self.ffn_norm)?.apply(&self.feed_forward)
@@ -154,6 +167,7 @@ pub mod transformer {
norm: RmsNorm,
output: Linear,
spk_cond_mask: Tensor,
+ span: tracing::Span,
}
impl Model {
@@ -189,6 +203,7 @@ pub mod transformer {
norm,
output,
spk_cond_mask,
+ span: tracing::span!(tracing::Level::TRACE, "qtransformer"),
})
}
@@ -199,6 +214,7 @@ pub mod transformer {
}
pub fn forward(&mut self, xs: &Tensor, spk_emb: &Tensor, pos: usize) -> Result<Tensor> {
+ let _enter = self.span.enter();
let (_b_sz, seqlen) = xs.dims2()?;
let mask: Vec<_> = (0..seqlen)
.flat_map(|i| (0..seqlen).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))