summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--candle-examples/examples/paligemma/README.md28
-rw-r--r--candle-examples/examples/paligemma/main.rs276
-rw-r--r--candle-transformers/src/models/gemma.rs20
-rw-r--r--candle-transformers/src/models/mod.rs1
-rw-r--r--candle-transformers/src/models/paligemma.rs109
5 files changed, 434 insertions, 0 deletions
diff --git a/candle-examples/examples/paligemma/README.md b/candle-examples/examples/paligemma/README.md
new file mode 100644
index 00000000..56ae061e
--- /dev/null
+++ b/candle-examples/examples/paligemma/README.md
@@ -0,0 +1,28 @@
+# PaliGemma
+
+[HuggingFace Model Card](https://huggingface.co/google/paligemma-3b-pt-224) -
+[Model Page](https://ai.google.dev/gemma/docs/paligemma)
+
+```bash
+cargo run --features cuda --release --example paligemma -- \
+ --prompt "caption fr" --image candle-examples/examples/yolo-v8/assets/bike.jpg
+```
+
+```
+loaded image with shape Tensor[dims 1, 3, 224, 224; bf16, cuda:0]
+loaded the model in 1.267744448s
+caption fr. Un groupe de cyclistes qui sont dans la rue.
+13 tokens generated (56.52 token/s)
+```
+
+```bash
+cargo run --features cuda --release --example paligemma -- \
+ --prompt "caption fr" --image candle-examples/examples/flux/assets/flux-robot.jpg
+```
+
+```
+loaded image with shape Tensor[dims 1, 3, 224, 224; bf16, cuda:0]
+loaded the model in 1.271492621s
+caption fr une image d' un robot sur la plage avec le mot rouillé
+15 tokens generated (62.78 token/s)
+```
diff --git a/candle-examples/examples/paligemma/main.rs b/candle-examples/examples/paligemma/main.rs
new file mode 100644
index 00000000..9ce5011b
--- /dev/null
+++ b/candle-examples/examples/paligemma/main.rs
@@ -0,0 +1,276 @@
+#[cfg(feature = "mkl")]
+extern crate intel_mkl_src;
+
+#[cfg(feature = "accelerate")]
+extern crate accelerate_src;
+
+use anyhow::{Error as E, Result};
+use clap::Parser;
+
+use candle_transformers::models::paligemma::{Config, Model};
+
+use candle::{DType, Device, Tensor};
+use candle_examples::token_output_stream::TokenOutputStream;
+use candle_nn::VarBuilder;
+use candle_transformers::generation::LogitsProcessor;
+use hf_hub::{api::sync::Api, Repo, RepoType};
+use tokenizers::Tokenizer;
+
+struct TextGeneration {
+ model: Model,
+ image: Tensor,
+ device: Device,
+ tokenizer: TokenOutputStream,
+ logits_processor: LogitsProcessor,
+ repeat_penalty: f32,
+ repeat_last_n: usize,
+}
+
+impl TextGeneration {
+ #[allow(clippy::too_many_arguments)]
+ fn new(
+ model: Model,
+ image: Tensor,
+ tokenizer: Tokenizer,
+ seed: u64,
+ temp: Option<f64>,
+ top_p: Option<f64>,
+ repeat_penalty: f32,
+ repeat_last_n: usize,
+ device: &Device,
+ ) -> Self {
+ let logits_processor = LogitsProcessor::new(seed, temp, top_p);
+ Self {
+ model,
+ image,
+ tokenizer: TokenOutputStream::new(tokenizer),
+ logits_processor,
+ repeat_penalty,
+ repeat_last_n,
+ device: device.clone(),
+ }
+ }
+
+ fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
+ use std::io::Write;
+ self.tokenizer.clear();
+ let mut tokens = self
+ .tokenizer
+ .tokenizer()
+ .encode(prompt, true)
+ .map_err(E::msg)?
+ .get_ids()
+ .to_vec();
+ for &t in tokens.iter() {
+ if let Some(t) = self.tokenizer.next_token(t)? {
+ print!("{t}")
+ }
+ }
+ std::io::stdout().flush()?;
+
+ let mut generated_tokens = 0usize;
+ let eos_token = match self.tokenizer.get_token("<eos>") {
+ Some(token) => token,
+ None => anyhow::bail!("cannot find the <eos> token"),
+ };
+ let start_gen = std::time::Instant::now();
+ for index in 0..sample_len {
+ let context_size = if index > 0 { 1 } else { tokens.len() };
+ let start_pos = tokens.len().saturating_sub(context_size);
+ let ctxt = &tokens[start_pos..];
+ let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
+ let logits = if index > 0 {
+ self.model.forward(&input)?
+ } else {
+ self.model.setup(&self.image, &input)?
+ };
+ let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
+ let logits = if self.repeat_penalty == 1. {
+ logits
+ } else {
+ let start_at = tokens.len().saturating_sub(self.repeat_last_n);
+ candle_transformers::utils::apply_repeat_penalty(
+ &logits,
+ self.repeat_penalty,
+ &tokens[start_at..],
+ )?
+ };
+
+ let next_token = self.logits_processor.sample(&logits)?;
+ tokens.push(next_token);
+ generated_tokens += 1;
+ if next_token == eos_token {
+ break;
+ }
+ if let Some(t) = self.tokenizer.next_token(next_token)? {
+ print!("{t}");
+ std::io::stdout().flush()?;
+ }
+ }
+ let dt = start_gen.elapsed();
+ if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
+ print!("{rest}");
+ }
+ std::io::stdout().flush()?;
+ println!(
+ "\n{generated_tokens} tokens generated ({:.2} token/s)",
+ generated_tokens as f64 / dt.as_secs_f64(),
+ );
+ Ok(())
+ }
+}
+
+#[derive(Parser, Debug)]
+#[command(author, version, about, long_about = None)]
+struct Args {
+ /// Run on CPU rather than on GPU.
+ #[arg(long)]
+ cpu: bool,
+
+ /// Enable tracing (generates a trace-timestamp.json file).
+ #[arg(long)]
+ tracing: bool,
+
+ #[arg(long)]
+ prompt: String,
+
+ /// The temperature used to generate samples.
+ #[arg(long)]
+ temperature: Option<f64>,
+
+ /// Nucleus sampling probability cutoff.
+ #[arg(long)]
+ top_p: Option<f64>,
+
+ /// The seed to use when generating random samples.
+ #[arg(long, default_value_t = 299792458)]
+ seed: u64,
+
+ /// The length of the sample to generate (in tokens).
+ #[arg(long, short = 'n', default_value_t = 10000)]
+ sample_len: usize,
+
+ #[arg(long)]
+ model_id: Option<String>,
+
+ #[arg(long, default_value = "main")]
+ revision: String,
+
+ #[arg(long)]
+ tokenizer_file: Option<String>,
+
+ #[arg(long)]
+ weight_files: Option<String>,
+
+ /// Penalty to be applied for repeating tokens, 1. means no penalty.
+ #[arg(long, default_value_t = 1.1)]
+ repeat_penalty: f32,
+
+ /// The context size to consider for the repeat penalty.
+ #[arg(long, default_value_t = 64)]
+ repeat_last_n: usize,
+
+ #[arg(long)]
+ image: String,
+}
+
+fn load_image<T: AsRef<std::path::Path>>(path: T, image_size: usize) -> anyhow::Result<Tensor> {
+ let img = image::ImageReader::open(path)?.decode()?;
+ let (height, width) = (image_size, image_size);
+ let img = img.resize_to_fill(
+ width as u32,
+ height as u32,
+ image::imageops::FilterType::Triangle,
+ );
+ let img = img.to_rgb8();
+ let img = img.into_raw();
+ let img = Tensor::from_vec(img, (height, width, 3), &Device::Cpu)?
+ .permute((2, 0, 1))?
+ .to_dtype(DType::F32)?
+ .affine(2. / 255., -1.)?;
+ Ok(img)
+}
+
+fn main() -> Result<()> {
+ use tracing_chrome::ChromeLayerBuilder;
+ use tracing_subscriber::prelude::*;
+
+ let args = Args::parse();
+ let _guard = if args.tracing {
+ let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
+ tracing_subscriber::registry().with(chrome_layer).init();
+ Some(guard)
+ } else {
+ None
+ };
+ println!(
+ "avx: {}, neon: {}, simd128: {}, f16c: {}",
+ candle::utils::with_avx(),
+ candle::utils::with_neon(),
+ candle::utils::with_simd128(),
+ candle::utils::with_f16c()
+ );
+ println!(
+ "temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
+ args.temperature.unwrap_or(0.),
+ args.repeat_penalty,
+ args.repeat_last_n
+ );
+
+ let start = std::time::Instant::now();
+ let api = Api::new()?;
+ let model_id = match &args.model_id {
+ Some(model_id) => model_id.to_string(),
+ None => "google/paligemma-3b-mix-224".to_string(),
+ };
+ let repo = api.repo(Repo::with_revision(
+ model_id,
+ RepoType::Model,
+ args.revision,
+ ));
+ let tokenizer_filename = match args.tokenizer_file {
+ Some(file) => std::path::PathBuf::from(file),
+ None => repo.get("tokenizer.json")?,
+ };
+ let filenames = match args.weight_files {
+ Some(files) => files
+ .split(',')
+ .map(std::path::PathBuf::from)
+ .collect::<Vec<_>>(),
+ None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
+ };
+ println!("retrieved the files in {:?}", start.elapsed());
+ let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
+
+ let device = candle_examples::device(args.cpu)?;
+ let dtype = if device.is_cuda() {
+ DType::BF16
+ } else {
+ DType::F32
+ };
+ let config = Config::paligemma_3b_224();
+ let image = load_image(&args.image, config.vision_config.image_size)?
+ .to_device(&device)?
+ .to_dtype(dtype)?
+ .unsqueeze(0)?;
+ println!("loaded image with shape {:?}", image);
+ let start = std::time::Instant::now();
+ let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
+ let model = Model::new(&config, vb)?;
+ println!("loaded the model in {:?}", start.elapsed());
+
+ let mut pipeline = TextGeneration::new(
+ model,
+ image,
+ tokenizer,
+ args.seed,
+ args.temperature,
+ args.top_p,
+ args.repeat_penalty,
+ args.repeat_last_n,
+ &device,
+ );
+ let prompt = format!("{}\n", args.prompt);
+ pipeline.run(&prompt, args.sample_len)?;
+ Ok(())
+}
diff --git a/candle-transformers/src/models/gemma.rs b/candle-transformers/src/models/gemma.rs
index 1cfef59e..69e22678 100644
--- a/candle-transformers/src/models/gemma.rs
+++ b/candle-transformers/src/models/gemma.rs
@@ -362,6 +362,10 @@ impl Model {
})
}
+ pub fn embed_tokens(&self) -> &candle_nn::Embedding {
+ &self.embed_tokens
+ }
+
fn prepare_decoder_attention_mask(
&self,
b_size: usize,
@@ -400,6 +404,22 @@ impl Model {
.apply(&self.lm_head)
}
+ pub fn forward_embeds(
+ &mut self,
+ xs: &Tensor,
+ attn_mask: Option<&Tensor>,
+ seqlen_offset: usize,
+ ) -> Result<Tensor> {
+ let (_, seq_len, _) = xs.dims3()?;
+ let mut xs = (xs * (self.hidden_size as f64).sqrt())?;
+ for layer in self.layers.iter_mut() {
+ xs = layer.forward(&xs, attn_mask, seqlen_offset)?
+ }
+ xs.narrow(1, seq_len - 1, 1)?
+ .apply(&self.norm)?
+ .apply(&self.lm_head)
+ }
+
pub fn clear_kv_cache(&mut self) {
for layer in self.layers.iter_mut() {
layer.clear_kv_cache()
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index a0e7a922..bba701bd 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -46,6 +46,7 @@ pub mod moondream;
pub mod mpt;
pub mod olmo;
pub mod openclip;
+pub mod paligemma;
pub mod parler_tts;
pub mod persimmon;
pub mod phi;
diff --git a/candle-transformers/src/models/paligemma.rs b/candle-transformers/src/models/paligemma.rs
new file mode 100644
index 00000000..e22ab241
--- /dev/null
+++ b/candle-transformers/src/models/paligemma.rs
@@ -0,0 +1,109 @@
+use crate::models::{gemma, siglip};
+use candle::{Module, Result, Tensor};
+use candle_nn::{linear, Linear, VarBuilder};
+
+#[derive(serde::Deserialize, Clone, Debug)]
+pub struct Config {
+ pub vision_config: siglip::VisionConfig,
+ pub text_config: gemma::Config,
+ pub projection_dim: usize,
+}
+
+impl Config {
+ pub fn paligemma_3b_224() -> Self {
+ // https://huggingface.co/google/paligemma-3b-pt-224/blob/main/config.json
+ Self {
+ vision_config: siglip::VisionConfig::paligemma_3b_224(),
+ text_config: gemma::Config {
+ hidden_size: 2048,
+ intermediate_size: 16384,
+ num_attention_heads: 8,
+ num_hidden_layers: 18,
+ num_key_value_heads: 1,
+ vocab_size: 257216,
+ // Default values.
+ rope_theta: 10000.,
+ head_dim: 256,
+ hidden_act: Some(candle_nn::Activation::GeluPytorchTanh),
+ hidden_activation: None,
+ attention_bias: false,
+ max_position_embeddings: 8192,
+ rms_norm_eps: 1e-6,
+ },
+ projection_dim: 2048,
+ }
+ }
+}
+
+#[derive(Clone, Debug)]
+pub struct MultiModalProjector {
+ linear: Linear,
+}
+
+impl MultiModalProjector {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let linear = linear(
+ cfg.vision_config.hidden_size,
+ cfg.projection_dim,
+ vb.pp("linear"),
+ )?;
+ Ok(Self { linear })
+ }
+}
+
+impl Module for MultiModalProjector {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ xs.apply(&self.linear)
+ }
+}
+
+#[derive(Clone, Debug)]
+pub struct Model {
+ pos: usize,
+ vision_tower: siglip::VisionModel,
+ multi_modal_projector: MultiModalProjector,
+ language_model: gemma::Model,
+}
+
+impl Model {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let vision_tower = siglip::VisionModel::new(
+ &cfg.vision_config,
+ false,
+ vb.pp("vision_tower.vision_model"),
+ )?;
+ let multi_modal_projector = MultiModalProjector::new(cfg, vb.pp("multi_modal_projector"))?;
+ let language_model = gemma::Model::new(false, &cfg.text_config, vb.pp("language_model"))?;
+ Ok(Self {
+ pos: 0,
+ language_model,
+ vision_tower,
+ multi_modal_projector,
+ })
+ }
+
+ pub fn setup(&mut self, pixel_values: &Tensor, input_ids: &Tensor) -> Result<Tensor> {
+ self.clear_kv_cache();
+ let image_features = self
+ .vision_tower
+ .forward(pixel_values)?
+ .apply(&self.multi_modal_projector)?;
+ let image_features = crate::models::clip::div_l2_norm(&image_features)?;
+ let text_features = self.language_model.embed_tokens().forward(input_ids)?;
+ let input_embeds = Tensor::cat(&[image_features, text_features], 1)?;
+ self.pos = input_embeds.dim(1)?;
+ self.language_model.forward_embeds(&input_embeds, None, 0)
+ }
+
+ pub fn forward(&mut self, input_ids: &Tensor) -> Result<Tensor> {
+ let pos = self.pos;
+ let seq_len = input_ids.dim(1)?;
+ self.pos = pos + seq_len;
+ self.language_model.forward(input_ids, pos)
+ }
+
+ pub fn clear_kv_cache(&mut self) {
+ self.pos = 0;
+ self.language_model.clear_kv_cache()
+ }
+}