summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--candle-core/src/metal_backend.rs702
-rw-r--r--candle-examples/Cargo.toml1
-rw-r--r--candle-metal-kernels/src/affine.metal18
-rw-r--r--candle-metal-kernels/src/cast.metal18
-rw-r--r--candle-metal-kernels/src/indexing.metal9
-rw-r--r--candle-metal-kernels/src/lib.rs303
-rw-r--r--candle-metal-kernels/src/reduce.metal156
-rw-r--r--candle-metal-kernels/src/ternary.metal3
-rw-r--r--candle-metal-kernels/src/tests.rs158
-rw-r--r--candle-metal-kernels/src/unary.metal48
-rw-r--r--candle-metal-kernels/tmp/affine.rs (renamed from candle-metal-kernels/examples/affine.rs)1
-rw-r--r--candle-metal-kernels/tmp/binary.rs (renamed from candle-metal-kernels/examples/binary.rs)0
-rw-r--r--candle-metal-kernels/tmp/cast.rs (renamed from candle-metal-kernels/examples/cast.rs)0
-rw-r--r--candle-metal-kernels/tmp/unary.rs (renamed from candle-metal-kernels/examples/unary.rs)6
-rw-r--r--candle-nn/Cargo.toml2
-rw-r--r--candle-nn/src/ops.rs40
16 files changed, 988 insertions, 477 deletions
diff --git a/candle-core/src/metal_backend.rs b/candle-core/src/metal_backend.rs
index 0b72f080..12f56d50 100644
--- a/candle-core/src/metal_backend.rs
+++ b/candle-core/src/metal_backend.rs
@@ -4,11 +4,13 @@ use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{CpuStorage, DType, Layout, Result, Shape};
use candle_metal_kernels;
use candle_metal_kernels::Kernels;
-use core::mem;
-use half::{bf16, f16};
+use half::f16;
use metal;
-use metal::{Buffer, CommandQueue, MTLResourceOptions, NSUInteger};
-use std::sync::Arc;
+use metal::mps::matrix::{Matrix, MatrixDescriptor, MatrixMultiplication};
+use metal::{Buffer, CommandBuffer, CommandQueue, MTLResourceOptions, NSUInteger};
+use std::collections::HashMap;
+use std::path::Path;
+use std::sync::{Arc, RwLock};
/// Metal related errors
#[derive(thiserror::Error, Debug)]
@@ -36,7 +38,9 @@ impl From<String> for MetalError {
pub struct MetalDevice {
device: metal::Device,
command_queue: metal::CommandQueue,
+ command_buffer: Arc<RwLock<metal::CommandBuffer>>,
kernels: Arc<candle_metal_kernels::Kernels>,
+ buffers: Arc<RwLock<HashMap<(NSUInteger, MTLResourceOptions), Vec<Arc<Buffer>>>>>,
}
impl std::fmt::Debug for MetalDevice {
@@ -58,10 +62,48 @@ impl MetalDevice {
self.registry_id()
}
+ pub fn metal_device(&self) -> &metal::Device {
+ &self.device
+ }
+
pub fn command_queue(&self) -> &CommandQueue {
&self.command_queue
}
+ pub fn command_buffer(&self) -> std::sync::RwLockReadGuard<CommandBuffer> {
+ self.command_buffer.try_read().unwrap()
+ }
+
+ pub fn commit(&self) {
+ let mut old = self.command_buffer.try_write().unwrap();
+ match old.status() {
+ metal::MTLCommandBufferStatus::NotEnqueued
+ | metal::MTLCommandBufferStatus::Enqueued => {
+ old.commit();
+ let command_buffer = self.command_queue.new_command_buffer().to_owned();
+ *old = command_buffer;
+ }
+ _ => {}
+ }
+ }
+
+ pub fn wait_until_completed(&self) {
+ let mut old = self.command_buffer.try_write().unwrap();
+ match old.status() {
+ metal::MTLCommandBufferStatus::NotEnqueued
+ | metal::MTLCommandBufferStatus::Enqueued => {
+ old.commit();
+ old.wait_until_completed();
+ }
+ metal::MTLCommandBufferStatus::Committed | metal::MTLCommandBufferStatus::Scheduled => {
+ old.wait_until_completed();
+ }
+ _ => {}
+ }
+ let command_buffer = self.command_queue.new_command_buffer().to_owned();
+ *old = command_buffer;
+ }
+
pub fn kernels(&self) -> &Kernels {
&self.kernels
}
@@ -70,16 +112,107 @@ impl MetalDevice {
&self.device
}
- pub fn new_buffer(&self, element_count: usize, dtype: DType) -> Buffer {
+ pub fn new_buffer(&self, element_count: usize, dtype: DType) -> Arc<Buffer> {
let size = (element_count * dtype.size_in_bytes()) as NSUInteger;
- self.device
- .new_buffer(size, MTLResourceOptions::StorageModeManaged)
+ self._new_buffer(size, MTLResourceOptions::StorageModePrivate)
+ }
+
+ fn _new_buffer(&self, size: NSUInteger, option: MTLResourceOptions) -> Arc<Buffer> {
+ let mut buffers = self.buffers.try_write().unwrap();
+ let subbuffers = buffers.entry((size, option)).or_insert(vec![]);
+
+ for sub in &mut *subbuffers {
+ if Arc::strong_count(sub) == 1 {
+ return sub.clone();
+ }
+ }
+ let new_buffer = self.device.new_buffer(size as NSUInteger, option);
+ let new_buffer = Arc::new(new_buffer);
+ subbuffers.push(new_buffer.clone());
+ new_buffer
+ }
+
+ pub fn new_buffer_managed(&self, size: NSUInteger) -> Arc<Buffer> {
+ self._new_buffer(size, MTLResourceOptions::StorageModeManaged)
+ }
+
+ pub fn new_buffer_with_data<T>(&self, data: &[T]) -> Arc<Buffer> {
+ let size = core::mem::size_of_val(data) as NSUInteger;
+ let tmp = self.device.new_buffer_with_data(
+ data.as_ptr() as *const core::ffi::c_void,
+ size,
+ metal::MTLResourceOptions::StorageModeManaged,
+ );
+ let real = self._new_buffer(size, metal::MTLResourceOptions::StorageModePrivate);
+ {
+ let command = self.command_buffer();
+ let blit = command.new_blit_command_encoder();
+ blit.copy_from_buffer(&tmp, 0, &real, 0, tmp.length());
+ blit.end_encoding();
+ }
+ // This is necessary, for mmaped safetensors
+ // Because of the unsafe slice cast we're doing.
+ // The slice might not live long enough for metal
+ // To actually fill the GPU buffer.
+ // Putting this wait forces the GPU buffer to be filled
+ // with the actual data allowing the CPU storage todo
+ // deallocate properly.
+ self.wait_until_completed();
+ real
+ }
+
+ pub fn new_matrix(
+ &self,
+ (b, m, n): (NSUInteger, NSUInteger, NSUInteger),
+ size: NSUInteger,
+ type_id: u32,
+ dtype: DType,
+ ) -> Result<(Matrix, Arc<Buffer>)> {
+ let elem_count = (b * m * n) as usize;
+ let out_buffer = self.new_buffer(elem_count, dtype);
+
+ let result_descriptor =
+ MatrixDescriptor::init_multiple(m, n, b, n * size, m * n * size, type_id);
+ let result_matrix = Matrix::init_with_buffer_descriptor(&out_buffer, 0, &result_descriptor)
+ .ok_or_else(|| {
+ MetalError::from("Failed to create matrix multiplication kernel".to_string())
+ })?;
+ Ok((result_matrix, out_buffer))
+ }
+
+ pub fn capture<P: AsRef<Path>>(&self, path: P) -> Result<()> {
+ let capture = metal::CaptureManager::shared();
+ let descriptor = metal::CaptureDescriptor::new();
+ descriptor.set_destination(metal::MTLCaptureDestination::GpuTraceDocument);
+ descriptor.set_capture_device(&self);
+ descriptor.set_output_url(path);
+
+ capture
+ .start_capture(&descriptor)
+ .map_err(MetalError::from)?;
+ Ok(())
}
}
#[derive(Debug, Clone)]
pub struct MetalStorage {
- buffer: metal::Buffer,
+ buffer: Arc<metal::Buffer>,
+ matrices: Arc<
+ RwLock<
+ HashMap<
+ (
+ NSUInteger,
+ NSUInteger,
+ NSUInteger,
+ bool,
+ NSUInteger,
+ NSUInteger,
+ u32,
+ ),
+ Matrix,
+ >,
+ >,
+ >,
device: MetalDevice,
dtype: DType,
}
@@ -108,14 +241,23 @@ impl BackendStorage for MetalStorage {
self.dtype
);
}
+
+ let buffer = self.device.new_buffer_managed(self.buffer.length());
+ let command_buffer = self.device.command_buffer();
+ let blit = command_buffer.new_blit_command_encoder();
+ blit.copy_from_buffer(&self.buffer, 0, &buffer, 0, self.buffer.length());
+ blit.end_encoding();
+ drop(command_buffer);
+ self.device.wait_until_completed();
+
match self.dtype {
- DType::U8 => Ok(CpuStorage::U8(self.buffer.read_to_vec(length / size))),
- DType::U32 => Ok(CpuStorage::U32(self.buffer.read_to_vec(length / size))),
- DType::I64 => Ok(CpuStorage::I64(self.buffer.read_to_vec(length / size))),
- DType::F16 => Ok(CpuStorage::F16(self.buffer.read_to_vec(length / size))),
- DType::BF16 => Ok(CpuStorage::BF16(self.buffer.read_to_vec(length / size))),
- DType::F32 => Ok(CpuStorage::F32(self.buffer.read_to_vec(length / size))),
- DType::F64 => Ok(CpuStorage::F64(self.buffer.read_to_vec(length / size))),
+ DType::U8 => Ok(CpuStorage::U8(buffer.read_to_vec(length / size))),
+ DType::U32 => Ok(CpuStorage::U32(buffer.read_to_vec(length / size))),
+ DType::I64 => Ok(CpuStorage::I64(buffer.read_to_vec(length / size))),
+ DType::F16 => Ok(CpuStorage::F16(buffer.read_to_vec(length / size))),
+ DType::BF16 => Ok(CpuStorage::BF16(buffer.read_to_vec(length / size))),
+ DType::F32 => Ok(CpuStorage::F32(buffer.read_to_vec(length / size))),
+ DType::F64 => Ok(CpuStorage::F64(buffer.read_to_vec(length / size))),
}
}
@@ -126,30 +268,48 @@ impl BackendStorage for MetalStorage {
let el = shape.elem_count();
let dtype = self.dtype;
- if layout.is_contiguous() || layout.start_offset() != 0 || dtype != DType::F32 {
- crate::bail!("Not contiguous, non-f32 affine is not implemented yet.");
+ let buffer = device.new_buffer(el, self.dtype);
+ let command_buffer = self.device.command_buffer();
+ if layout.is_contiguous() && layout.start_offset() == 0 {
+ let name = match self.dtype {
+ DType::F32 => "affine_float",
+ DType::F16 => "affine_half",
+ dtype => crate::bail!("Affine {dtype:?}"),
+ };
+ candle_metal_kernels::call_affine(
+ &device.device,
+ &command_buffer,
+ &device.kernels,
+ name,
+ el,
+ &self.buffer,
+ &buffer,
+ mul as f32,
+ add as f32,
+ )
+ .map_err(MetalError::from)?;
+ } else {
+ let name = match self.dtype {
+ DType::F32 => "affine_float_strided",
+ DType::F16 => "affine_half_strided",
+ dtype => crate::bail!("Affine {dtype:?}"),
+ };
+ candle_metal_kernels::call_affine_strided(
+ &device.device,
+ &command_buffer,
+ &device.kernels,
+ name,
+ layout.dims(),
+ &self.buffer,
+ layout.stride(),
+ layout.start_offset() * dtype.size_in_bytes(),
+ &buffer,
+ mul as f32,
+ add as f32,
+ )
+ .map_err(MetalError::from)?;
}
-
- let mut buffer = device.new_buffer(el, self.dtype);
- let command_buffer = self.device.command_queue.new_command_buffer();
- candle_metal_kernels::call_affine(
- &device.device,
- &command_buffer,
- &device.kernels,
- el,
- &self.buffer,
- &mut buffer,
- mul as f32,
- add as f32,
- )
- .map_err(MetalError::from)?;
- command_buffer.commit();
- command_buffer.wait_until_completed();
- return Ok(Self {
- buffer,
- device: device.clone(),
- dtype,
- });
+ Ok(Self::new(buffer, device.clone(), dtype))
}
fn powf(&self, _: &Layout, _: f64) -> Result<Self> {
@@ -163,11 +323,11 @@ impl BackendStorage for MetalStorage {
fn reduce_op(&self, op: ReduceOp, layout: &Layout, sum_dims: &[usize]) -> Result<Self> {
if !(sum_dims.len() == 1
&& sum_dims[0] == layout.shape().rank() - 1
- && layout.is_contiguous()
- && layout.start_offset() == 0)
+ && layout.stride()[sum_dims[0]] == 1)
{
- crate::bail!("Non contiguous reduce op not supported yet");
+ crate::bail!("Non last dim reduce op not supported yet");
}
+
let device = self.device.clone();
let src_stride = layout.stride();
let src_dims = layout.shape().dims();
@@ -202,8 +362,11 @@ impl BackendStorage for MetalStorage {
Err(crate::Error::EmptyTensor { op: "reduce" }.bt())?
}
let dtype = if return_index { DType::U32 } else { self.dtype };
- let mut buffer = device.new_buffer(dst_el, dtype);
- let command_buffer = self.device.command_queue.new_command_buffer();
+ if dtype == DType::U32 {
+ crate::bail!("Implement return index reduce op");
+ }
+ let buffer = device.new_buffer(dst_el, dtype);
+ let command_buffer = self.device.command_buffer();
candle_metal_kernels::call_reduce_contiguous(
&device.device,
&command_buffer,
@@ -212,17 +375,12 @@ impl BackendStorage for MetalStorage {
src_el,
dst_el,
&self.buffer,
- &mut buffer,
+ layout.start_offset() * self.dtype.size_in_bytes(),
+ &buffer,
)
.map_err(MetalError::from)?;
- command_buffer.commit();
- command_buffer.wait_until_completed();
- Ok(Self {
- buffer,
- device,
- dtype,
- })
+ Ok(Self::new(buffer, device, dtype))
}
fn cmp(&self, _: CmpOp, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
@@ -233,11 +391,15 @@ impl BackendStorage for MetalStorage {
let device = self.device();
let shape = layout.shape();
let el_count = shape.elem_count();
- let mut buffer = device.new_buffer(el_count, dtype);
- let command_buffer = device.command_queue.new_command_buffer();
+ let buffer = device.new_buffer(el_count, dtype);
+ let command_buffer = device.command_buffer();
if layout.is_contiguous() {
let kernel_name = match (self.dtype, dtype) {
(DType::U32, DType::F32) => "cast_u32_f32",
+ (DType::U32, DType::U8) => "cast_u32_u8",
+ (DType::U8, DType::U32) => "cast_u8_u32",
+ (DType::F32, DType::F16) => "cast_f32_f16",
+ (DType::F16, DType::F32) => "cast_f16_f32",
(left, right) => crate::bail!("to dtype {left:?} - {right:?}"),
};
candle_metal_kernels::call_cast_contiguous(
@@ -247,24 +409,34 @@ impl BackendStorage for MetalStorage {
kernel_name,
el_count,
&self.buffer,
- &mut buffer,
+ layout.start_offset() * self.dtype.size_in_bytes(),
+ &buffer,
)
.map_err(MetalError::from)?;
} else {
- crate::bail!(
- "TODO Implement the kernel calling cast {:?}-{:?}",
- self.dtype,
- dtype
- );
+ let kernel_name = match (self.dtype, dtype) {
+ (DType::U32, DType::F32) => "cast_u32_f32_strided",
+ (DType::U32, DType::U8) => "cast_u32_u8_strided",
+ (DType::U8, DType::U32) => "cast_u8_u32_strided",
+ (DType::F32, DType::F16) => "cast_f32_f16_strided",
+ (DType::F16, DType::F32) => "cast_f16_f32_strided",
+ (left, right) => crate::bail!("to dtype {left:?} - {right:?}"),
+ };
+ candle_metal_kernels::call_cast_strided(
+ &device.device,
+ &command_buffer,
+ &device.kernels,
+ kernel_name,
+ layout.dims(),
+ &self.buffer,
+ layout.stride(),
+ layout.start_offset() * self.dtype.size_in_bytes(),
+ &buffer,
+ )
+ .map_err(MetalError::from)?;
}
- command_buffer.commit();
- command_buffer.wait_until_completed();
- Ok(Self {
- buffer,
- device: device.clone(),
- dtype,
- })
+ Ok(Self::new(buffer, device.clone(), dtype))
}
fn unary_impl<B: UnaryOpT>(&self, layout: &Layout) -> Result<Self> {
@@ -272,8 +444,8 @@ impl BackendStorage for MetalStorage {
let dtype = self.dtype;
let shape = layout.shape();
let el_count = shape.elem_count();
- let mut buffer = device.new_buffer(el_count, dtype);
- let command_buffer = device.command_queue.new_command_buffer();
+ let buffer = device.new_buffer(el_count, dtype);
+ let command_buffer = device.command_buffer();
if layout.is_contiguous() && layout.start_offset() == 0 {
use candle_metal_kernels::unary::contiguous;
@@ -285,6 +457,25 @@ impl BackendStorage for MetalStorage {
("uneg", DType::F32) => contiguous::neg::FLOAT,
("uexp", DType::F32) => contiguous::exp::FLOAT,
("ulog", DType::F32) => contiguous::log::FLOAT,
+ ("ugelu", DType::F32) => contiguous::gelu::FLOAT,
+ ("ugelu_erf", DType::F32) => contiguous::gelu_erf::FLOAT,
+ ("uerf", DType::F32) => contiguous::erf::FLOAT,
+ ("uceil", DType::F32) => contiguous::ceil::FLOAT,
+ ("ufloor", DType::F32) => contiguous::floor::FLOAT,
+ ("uround", DType::F32) => contiguous::round::FLOAT,
+ ("ucos", DType::F16) => contiguous::cos::HALF,
+ ("usin", DType::F16) => contiguous::sin::HALF,
+ ("usqr", DType::F16) => contiguous::sqr::HALF,
+ ("usqrt", DType::F16) => contiguous::sqrt::HALF,
+ ("uneg", DType::F16) => contiguous::neg::HALF,
+ ("uexp", DType::F16) => contiguous::exp::HALF,
+ ("ulog", DType::F16) => contiguous::log::HALF,
+ ("ugelu", DType::F16) => contiguous::gelu::HALF,
+ ("ugelu_erf", DType::F16) => contiguous::gelu_erf::HALF,
+ ("uerf", DType::F16) => contiguous::erf::HALF,
+ ("uceil", DType::F16) => contiguous::ceil::HALF,
+ ("ufloor", DType::F16) => contiguous::floor::HALF,
+ ("uround", DType::F16) => contiguous::round::HALF,
(name, dtype) => crate::bail!("Match {name} - {dtype:?}"),
};
candle_metal_kernels::call_unary_contiguous(
@@ -294,20 +485,58 @@ impl BackendStorage for MetalStorage {
kernel_name,
el_count,
&self.buffer,
- &mut buffer,
+ &buffer,
)
.map_err(MetalError::from)?;
} else {
- crate::bail!("TODO Implement the kernel calling {}", B::KERNEL);
+ use candle_metal_kernels::unary::strided;
+ let kernel_name = match (B::KERNEL, dtype) {
+ ("ucos", DType::F32) => strided::cos::FLOAT,
+ ("usin", DType::F32) => strided::sin::FLOAT,
+ ("usqr", DType::F32) => strided::sqr::FLOAT,
+ ("usqrt", DType::F32) => strided::sqrt::FLOAT,
+ ("uneg", DType::F32) => strided::neg::FLOAT,
+ ("uexp", DType::F32) => strided::exp::FLOAT,
+ ("ulog", DType::F32) => strided::log::FLOAT,
+ ("ugelu", DType::F32) => strided::gelu::FLOAT,
+ ("ugelu_erf", DType::F32) => strided::gelu_erf::FLOAT,
+ ("uerf", DType::F32) => strided::erf::FLOAT,
+ ("uceil", DType::F32) => strided::ceil::FLOAT,
+ ("ufloor", DType::F32) => strided::floor::FLOAT,
+ ("uround", DType::F32) => strided::round::FLOAT,
+ ("ucos", DType::F16) => strided::cos::HALF,
+ ("usin", DType::F16) => strided::sin::HALF,
+ ("usqr", DType::F16) => strided::sqr::HALF,
+ ("usqrt", DType::F16) => strided::sqrt::HALF,
+ ("uneg", DType::F16) => strided::neg::HALF,
+ ("uexp", DType::F16) => strided::exp::HALF,
+ ("ulog", DType::F16) => strided::log::HALF,
+ ("ugelu", DType::F16) => strided::gelu::HALF,
+ ("ugelu_erf", DType::F16) => strided::gelu_erf::HALF,
+ ("uerf", DType::F16) => strided::erf::HALF,
+ ("uceil", DType::F16) => strided::ceil::HALF,
+ ("ufloor", DType::F16) => strided::floor::HALF,
+ ("uround", DType::F16) => strided::round::HALF,
+ (name, dtype) => crate::bail!("Match {name} - {dtype:?}"),
+ };
+ candle_metal_kernels::call_unary_strided(
+ &device.device,
+ &command_buffer,
+ &device.kernels,
+ kernel_name,
+ layout.dims(),
+ &self.buffer,
+ layout.stride(),
+ layout.start_offset() * self.dtype.size_in_bytes(),
+ &buffer,
+ 0,
+ )
+ .map_err(MetalError::from)?;
}
- command_buffer.commit();
- command_buffer.wait_until_completed();
-
- Ok(Self {
- buffer,
- device: device.clone(),
- dtype,
- })
+ command_buffer.set_label("unary");
+ drop(command_buffer);
+ self.device.commit();
+ Ok(Self::new(buffer, device.clone(), dtype))
}
fn binary_impl<B: BinaryOpT>(
@@ -320,8 +549,8 @@ impl BackendStorage for MetalStorage {
let dtype = self.dtype;
let shape = lhs_l.shape();
let el_count = shape.elem_count();
- let mut buffer = device.new_buffer(el_count, dtype);
- let command_buffer = device.command_queue.new_command_buffer();
+ let buffer = device.new_buffer(el_count, dtype);
+ let command_buffer = device.command_buffer();
if (lhs_l.is_contiguous() && lhs_l.start_offset() == 0)
&& (rhs_l.is_contiguous() && rhs_l.start_offset() == 0)
{
@@ -336,6 +565,14 @@ impl BackendStorage for MetalStorage {
("bmul", DType::F32) => contiguous::mul::FLOAT,
("div", DType::F32) => contiguous::div::FLOAT,
("bdiv", DType::F32) => contiguous::div::FLOAT,
+ ("add", DType::F16) => contiguous::add::HALF,
+ ("badd", DType::F16) => contiguous::add::HALF,
+ ("sub", DType::F16) => contiguous::sub::HALF,
+ ("bsub", DType::F16) => contiguous::sub::HALF,
+ ("mul", DType::F16) => contiguous::mul::HALF,
+ ("bmul", DType::F16) => contiguous::mul::HALF,
+ ("div", DType::F16) => contiguous::div::HALF,
+ ("bdiv", DType::F16) => contiguous::div::HALF,
(name, dtype) => crate::bail!("Match {name} - {dtype:?}"),
};
candle_metal_kernels::call_binary_contiguous(
@@ -346,7 +583,7 @@ impl BackendStorage for MetalStorage {
el_count,
&self.buffer,
&rhs.buffer,
- &mut buffer,
+ &buffer,
)
.map_err(MetalError::from)?;
} else {
@@ -357,6 +594,10 @@ impl BackendStorage for MetalStorage {
("bsub", DType::F32) => strided::sub::FLOAT,
("bmul", DType::F32) => strided::mul::FLOAT,
("bdiv", DType::F32) => strided::div::FLOAT,
+ ("badd", DType::F16) => strided::add::HALF,
+ ("bsub", DType::F16) => strided::sub::HALF,
+ ("bmul", DType::F16) => strided::mul::HALF,
+ ("bdiv", DType::F16) => strided::div::HALF,
(name, dtype) => crate::bail!("Match {name} - {dtype:?}"),
};
candle_metal_kernels::call_binary_strided(
@@ -366,23 +607,19 @@ impl BackendStorage for MetalStorage {
kernel_name,
lhs_l.dims(),
&self.buffer,
- &lhs_l.stride(),
+ lhs_l.stride(),
lhs_l.start_offset() * self.dtype.size_in_bytes(),
&rhs.buffer,
- &rhs_l.stride(),
+ rhs_l.stride(),
rhs_l.start_offset() * rhs.dtype.size_in_bytes(),
- &mut buffer,
+ &buffer,
)
.map_err(MetalError::from)?;
}
- command_buffer.commit();
- command_buffer.wait_until_completed();
-
- Ok(Self {
- buffer,
- device: device.clone(),
- dtype,
- })
+ command_buffer.set_label("binary");
+ drop(command_buffer);
+ self.device.commit();
+ Ok(Self::new(buffer, device.clone(), dtype))
}
fn where_cond(
@@ -398,14 +635,22 @@ impl BackendStorage for MetalStorage {
let dims = shape.dims();
let el = shape.elem_count();
let dtype = t.dtype;
- let mut buffer = self.device.new_buffer(el, dtype);
- let command_buffer = self.device.command_queue.new_command_buffer();
+ let buffer = self.device.new_buffer(el, dtype);
+ let command_buffer = self.device.command_buffer();
+ if t.dtype() != f.dtype() {
+ crate::bail!("Invalid ternary different dtypes for values");
+ }
+ let name = match (self.dtype, t.dtype()) {
+ (DType::U8, DType::F32) => "where_u8_f32",
+ (DType::U8, DType::F16) => "where_u8_f16",
+ (left, right) => crate::bail!("Ternary {left:?} - {right:?} not implemented"),
+ };
candle_metal_kernels::call_where_cond_strided(
&device.device,
&command_buffer,
&device.kernels,
- "where_u8_f32",
- &dims,
+ name,
+ dims,
&self.buffer,
(
layout.stride(),
@@ -415,16 +660,10 @@ impl BackendStorage for MetalStorage {
(&t_l.stride(), t_l.start_offset() * t.dtype.size_in_bytes()),
&f.buffer,
(&f_l.stride(), f_l.start_offset() * f.dtype.size_in_bytes()),
- &mut buffer,
+ &buffer,
)
.map_err(MetalError::from)?;
- command_buffer.commit();
- command_buffer.wait_until_completed();
- Ok(Self {
- buffer,
- device,
- dtype,
- })
+ Ok(Self::new(buffer, device, dtype))
}
fn conv1d(
@@ -513,12 +752,13 @@ impl BackendStorage for MetalStorage {
let dst_el = ids_el * left_size * right_size;
let dtype = self.dtype;
let device = self.device();
- let mut buffer = device.new_buffer(dst_el, dtype);
+ let buffer = device.new_buffer(dst_el, dtype);
let name = match (ids.dtype, self.dtype) {
(DType::U32, DType::F32) => "is_u32_f32",
+ (DType::U32, DType::F16) => "is_u32_f16",
(left, right) => crate::bail!("index select metal {left:?} {right:?}"),
};
- let command_buffer = self.device.command_queue.new_command_buffer();
+ let command_buffer = self.device.command_buffer();
candle_metal_kernels::call_index_select(
&device.device,
&command_buffer,
@@ -529,16 +769,10 @@ impl BackendStorage for MetalStorage {
dim,
&self.buffer,
&ids.buffer,
- &mut buffer,
+ &buffer,
)
.map_err(MetalError::from)?;
- command_buffer.commit();
- command_buffer.wait_until_completed();
- Ok(Self {
- buffer,
- device: device.clone(),
- dtype,
- })
+ Ok(Self::new(buffer, device.clone(), dtype))
}
fn index_add(
@@ -561,11 +795,18 @@ impl BackendStorage for MetalStorage {
rhs_l: &Layout,
) -> Result<Self> {
// Create descriptors
- use metal::mps::matrix::*;
- let type_id = metal::mps::MPS_FLOATBIT_ENCODING | 32;
- let size = core::mem::size_of::<f32>() as NSUInteger;
- let elem_count = b * m * n;
+ let (type_id, size) = match self.dtype {
+ DType::F32 => (
+ metal::mps::MPS_FLOATBIT_ENCODING | 32,
+ core::mem::size_of::<f32>() as NSUInteger,
+ ),
+ DType::F16 => (
+ metal::mps::MPS_FLOATBIT_ENCODING | 16,
+ core::mem::size_of::<f16>() as NSUInteger,
+ ),
+ dtype => todo!("Dtype for matmul {dtype:?} is not supported"),
+ };
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
@@ -596,39 +837,30 @@ impl BackendStorage for MetalStorage {
mnk: (m, n, k),
})?
};
-
let b = b as NSUInteger;
let m = m as NSUInteger;
let n = n as NSUInteger;
let k = k as NSUInteger;
- let left_descriptor = if transpose_left {
- MatrixDescriptor::init_single(k, m, m * size, type_id)
- } else {
- MatrixDescriptor::init_single(m, k, k * size, type_id)
- };
- let right_descriptor = if transpose_right {
- MatrixDescriptor::init_single(n, k, k * size, type_id)
- } else {
- MatrixDescriptor::init_single(k, n, n * size, type_id)
- };
- let result_descriptor = MatrixDescriptor::init_single(m, n, n * size, type_id);
-
- // Create matrix objects
- let left_matrix = Matrix::init_with_buffer_descriptor(&self.buffer, 0, &left_descriptor)
- .ok_or_else(|| {
- MetalError::from("Failed to create matrix multiplication kernel".to_string())
- })?;
- let right_matrix = Matrix::init_with_buffer_descriptor(&rhs.buffer, 0, &right_descriptor)
- .ok_or_else(|| {
- MetalError::from("Failed to create matrix multiplication kernel".to_string())
- })?;
+ let left_matrix = self.matrix(
+ (b, m, k),
+ transpose_left,
+ size,
+ lhs_l.start_offset() as NSUInteger * size,
+ type_id,
+ )?;
+ let right_matrix = rhs.matrix(
+ (b, k, n),
+ transpose_right,
+ size,
+ rhs_l.start_offset() as NSUInteger * size,
+ type_id,
+ )?;
+ let (result_matrix, out_buffer) =
+ self.device
+ .new_matrix((b, m, n), size, type_id, self.dtype)?;
- let out_buffer = self.device.new_buffer(elem_count, self.dtype);
- let result_matrix = Matrix::init_with_buffer_descriptor(&out_buffer, 0, &result_descriptor)
- .ok_or_else(|| {
- MetalError::from("Failed to create matrix multiplication kernel".to_string())
- })?;
+ let command_buffer = self.device.command_buffer();
let alpha = 1.0f64;
let beta = 0.0f64;
@@ -647,70 +879,112 @@ impl BackendStorage for MetalStorage {
MetalError::from("Failed to create matrix multiplication kernel".to_string())
})?;
- matrix_multiplication.set_batch_size(b);
-
// Encode kernel to command buffer
- let command_buffer = self.device.command_queue.new_command_buffer();
matrix_multiplication.encode_to_command_buffer(
- command_buffer,
+ &command_buffer,
&left_matrix,
&right_matrix,
&result_matrix,
);
- command_buffer.commit();
- command_buffer.wait_until_completed();
+ command_buffer.set_label("matmul");
+ drop(command_buffer);
+ self.device.commit();
- Ok(Self {
- buffer: out_buffer,
- device: self.device.clone(),
- dtype: self.dtype(),
- })
+ Ok(Self::new(out_buffer, self.device.clone(), self.dtype()))
}
fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {
- let src_shape = src_l.shape();
- let el_count = src_shape.elem_count();
- if el_count == 0 {
- return Ok(());
+ let command_buffer = self.device.command_buffer();
+ if src_l.is_contiguous() && self.dtype == dst.dtype() {
+ command_buffer.set_label("copy_contiguous");
+ let blit = command_buffer.new_blit_command_encoder();
+ let src_offset = (src_l.start_offset() * self.dtype.size_in_bytes()) as NSUInteger;
+ let dst_offset = (dst_offset * dst.dtype().size_in_bytes()) as NSUInteger;
+ blit.copy_from_buffer(
+ &self.buffer,
+ src_offset,
+ dst.buffer(),
+ dst_offset,
+ self.buffer.length() - src_offset,
+ );
+ blit.end_encoding();
+ } else {
+ let src_shape = src_l.shape();
+ let el_count = src_shape.elem_count();
+ if el_count == 0 {
+ return Ok(());
+ }
+ let kernel_name = match self.dtype {
+ DType::F32 => candle_metal_kernels::unary::strided::copy::FLOAT,
+ DType::F16 => candle_metal_kernels::unary::strided::copy::HALF,
+ DType::BF16 => candle_metal_kernels::unary::strided::copy::BFLOAT,
+ DType::U32 => candle_metal_kernels::unary::strided::copy::U32,
+ DType::U8 => candle_metal_kernels::unary::strided::copy::U8,
+ dtype => crate::bail!("copy_strided not implemented for {dtype:?}"),
+ };
+ candle_metal_kernels::call_unary_strided(
+ &self.device.device,
+ &command_buffer,
+ &self.device.kernels,
+ kernel_name,
+ src_l.dims(),
+ &self.buffer,
+ src_l.stride(),
+ src_l.start_offset() * self.dtype.size_in_bytes(),
+ &dst.buffer,
+ dst_offset * dst.dtype.size_in_bytes(),
+ )
+ .map_err(MetalError::from)?;
+ command_buffer.set_label("copy_strided");
}
- let command_buffer = self.device.command_queue.new_command_buffer();
- let kernel_name = match self.dtype {
- DType::F32 => candle_metal_kernels::unary::strided::copy::FLOAT,
- DType::F16 => candle_metal_kernels::unary::strided::copy::HALF,
- DType::BF16 => candle_metal_kernels::unary::strided::copy::BFLOAT,
- dtype => crate::bail!("copy_strided not implemented for {dtype:?}"),
- };
- candle_metal_kernels::call_unary_strided(
- &self.device.device,
- &command_buffer,
- &self.device.kernels,
- kernel_name,
- src_l.dims(),
- &self.buffer,
- &src_l.stride(),
- src_l.start_offset() * self.dtype.size_in_bytes(),
- &mut dst.buffer,
- dst_offset,
- )
- .map_err(MetalError::from)?;
- command_buffer.commit();
- command_buffer.wait_until_completed();
+ drop(command_buffer);
+ self.device.commit();
Ok(())
}
}
impl MetalStorage {
- pub fn new(buffer: Buffer, device: MetalDevice, dtype: DType) -> Self {
+ pub fn new(buffer: Arc<Buffer>, device: MetalDevice, dtype: DType) -> Self {
+ let matrices = Arc::new(RwLock::new(HashMap::new()));
Self {
buffer,
device,
dtype,
+ matrices,
}
}
pub fn buffer(&self) -> &Buffer {
&self.buffer
}
+
+ fn matrix(
+ &self,
+ (b, m, n): (NSUInteger, NSUInteger, NSUInteger),
+ transpose: bool,
+ size: NSUInteger,
+ offset: NSUInteger,
+ type_id: u32,
+ ) -> Result<Matrix> {
+ let key = (b, m, n, transpose, size, offset, type_id);
+
+ let mut matrices = self.matrices.try_write().unwrap();
+ if let Some(matrix) = matrices.get(&key) {
+ Ok(matrix.clone())
+ } else {
+ let descriptor = if transpose {
+ MatrixDescriptor::init_multiple(n, m, b, m * size, m * n * size, type_id)
+ } else {
+ MatrixDescriptor::init_multiple(m, n, b, n * size, m * n * size, type_id)
+ };
+ let matrix = Matrix::init_with_buffer_descriptor(&self.buffer, offset, &descriptor)
+ .ok_or_else(|| {
+ MetalError::from("Failed to create matrix multiplication kernel".to_string())
+ })?;
+ matrices.insert(key, matrix.clone());
+ Ok(matrix)
+ }
+ }
}
impl BackendDevice for MetalDevice {
@@ -720,10 +994,14 @@ impl BackendDevice for MetalDevice {
let device = metal::Device::all().swap_remove(ordinal);
let command_queue = device.new_command_queue();
+ let command_buffer = Arc::new(RwLock::new(command_queue.new_command_buffer().to_owned()));
let kernels = Arc::new(Kernels::new());
+ let buffers = Arc::new(RwLock::new(HashMap::new()));
Ok(Self {
device,
command_queue,
+ command_buffer,
+ buffers,
kernels,
})
}
@@ -743,9 +1021,8 @@ impl BackendDevice for MetalDevice {
}
fn zeros_impl(&self, shape: &Shape, dtype: DType) -> Result<MetalStorage> {
- // TODO Is there a faster way ?
- let cpu_storage = crate::cpu_backend::CpuDevice.zeros_impl(shape, dtype)?;
- self.storage_from_cpu_storage(&cpu_storage)
+ let buffer = self.new_buffer(shape.elem_count(), dtype);
+ Ok(MetalStorage::new(buffer, self.clone(), dtype))
}
fn ones_impl(&self, shape: &Shape, dtype: DType) -> Result<Self::Storage> {
@@ -755,49 +1032,20 @@ impl BackendDevice for MetalDevice {
}
fn storage_from_cpu_storage(&self, storage: &CpuStorage) -> Result<Self::Storage> {
- let option = metal::MTLResourceOptions::StorageModeManaged;
let buffer = match storage {
- CpuStorage::U8(storage) => self.device.new_buffer_with_data(
- storage.as_ptr() as *const core::ffi::c_void,
- (storage.len() * mem::size_of::<u8>()) as NSUInteger,
- option,
- ),
- CpuStorage::U32(storage) => self.device.new_buffer_with_data(
- storage.as_ptr() as *const core::ffi::c_void,
- (storage.len() * mem::size_of::<u32>()) as NSUInteger,
- option,
- ),
- CpuStorage::I64(storage) => self.device.new_buffer_with_data(
- storage.as_ptr() as *const core::ffi::c_void,
- (storage.len() * mem::size_of::<i64>()) as NSUInteger,
- option,
- ),
- CpuStorage::BF16(storage) => self.device.new_buffer_with_data(
- storage.as_ptr() as *const core::ffi::c_void,
- (storage.len() * mem::size_of::<bf16>()) as NSUInteger,
- option,
- ),
- CpuStorage::F16(storage) => self.device.new_buffer_with_data(
- storage.as_ptr() as *const core::ffi::c_void,
- (storage.len() * mem::size_of::<f16>()) as NSUInteger,
- option,
- ),
- CpuStorage::F32(storage) => self.device.new_buffer_with_data(
- storage.as_ptr() as *const core::ffi::c_void,
- (storage.len() * mem::size_of::<f32>()) as NSUInteger,
- option,
- ),
- CpuStorage::F64(storage) => self.device.new_buffer_with_data(
- storage.as_ptr() as *const core::ffi::c_void,
- (storage.len() * mem::size_of::<f64>()) as NSUInteger,
- option,
- ),
+ CpuStorage::U8(storage) => self.new_buffer_with_data(storage),
+ CpuStorage::U32(storage) => self.new_buffer_with_data(storage),
+ CpuStorage::I64(storage) => self.new_buffer_with_data(storage),
+ CpuStorage::BF16(storage) => self.new_buffer_with_data(storage),
+ CpuStorage::F16(storage) => self.new_buffer_with_data(storage),
+ CpuStorage::F32(storage) => self.new_buffer_with_data(storage),
+ CpuStorage::F64(storage) => self.new_buffer_with_data(storage),
};
- Ok(Self::Storage {
- buffer,
- device: self.clone(),
- dtype: storage.dtype(),
- })
+ Ok(Self::Storage::new(
+ buffer.into(),
+ self.clone(),
+ storage.dtype(),
+ ))
}
fn rand_uniform(
diff --git a/candle-examples/Cargo.toml b/candle-examples/Cargo.toml
index 38d26ead..adfa529e 100644
--- a/candle-examples/Cargo.toml
+++ b/candle-examples/Cargo.toml
@@ -57,6 +57,7 @@ flash-attn = ["cuda", "candle-transformers/flash-attn", "dep:candle-flash-attn"]
mkl = ["dep:intel-mkl-src", "candle/mkl", "candle-nn/mkl", "candle-transformers/mkl"]
nccl = ["cuda", "cudarc/nccl", "dep:half"]
onnx = ["candle-onnx"]
+metal = ["candle/metal", "candle-nn/metal"]
[[example]]
name = "llama_multiprocess"
diff --git a/candle-metal-kernels/src/affine.metal b/candle-metal-kernels/src/affine.metal
index e5f0a841..a08bfbc0 100644
--- a/candle-metal-kernels/src/affine.metal
+++ b/candle-metal-kernels/src/affine.metal
@@ -33,6 +33,24 @@ kernel void FN_NAME( \
const TYPENAME a = TYPENAME(add); \
output[id] = input[id] * m + a; \
} \
+kernel void FN_NAME##_strided( \
+ constant size_t &dim, \
+ constant size_t &num_dims, \
+ constant size_t *dims, \
+ constant size_t *strides, \
+ constant float &mul, \
+ constant float &add, \
+ device const TYPENAME *input, \
+ device TYPENAME *output, \
+ uint id [[ thread_position_in_grid ]] \
+) { \
+ if (id >= dim) { \
+ return; \
+ } \
+ const TYPENAME m = TYPENAME(mul); \
+ const TYPENAME a = TYPENAME(add); \
+ output[id] = input[get_strided_index(id, num_dims, dims, strides)] * m + a; \
+} \
AFFINE(affine_float, float)
AFFINE(affine_half, half)
diff --git a/candle-metal-kernels/src/cast.metal b/candle-metal-kernels/src/cast.metal
index d1788253..4398e9d4 100644
--- a/candle-metal-kernels/src/cast.metal
+++ b/candle-metal-kernels/src/cast.metal
@@ -23,12 +23,12 @@ kernel void FN_NAME( \
constant size_t &dim, \
device const LEFT_TYPENAME *input, \
device RIGHT_TYPENAME *output, \
- uint thread_position_in_grid [[ thread_position_in_grid ]] \
+ uint tid [[ thread_position_in_grid ]] \
) { \
- if (thread_position_in_grid >= dim) { \
+ if (tid >= dim) { \
return; \
} \
- output[thread_position_in_grid] = RIGHT_TYPENAME(input[thread_position_in_grid]); \
+ output[tid] = RIGHT_TYPENAME(input[tid]); \
} \
kernel void FN_NAME_STRIDED( \
constant size_t &dim, \
@@ -37,15 +37,19 @@ kernel void FN_NAME_STRIDED( \
constant size_t *strides, \
device const LEFT_TYPENAME *input, \
device RIGHT_TYPENAME *output, \
- uint i [[ thread_position_in_grid ]] \
+ uint tid [[ thread_position_in_grid ]] \
) { \
- if (i >= dim) { \
+ if (tid >= dim) { \
return; \
} \
- output[i] = RIGHT_TYPENAME(input[get_strided_index(i, num_dims, dims, strides)]); \
+ output[tid] = RIGHT_TYPENAME(input[get_strided_index(tid, num_dims, dims, strides)]); \
} \
-CAST(cast_u32_f32, cast_u32_f32_strided, int32_t, float)
+CAST(cast_u32_f32, cast_u32_f32_strided, uint32_t, float)
+CAST(cast_u32_u8, cast_u32_u8_strided, uint32_t, uint8_t)
+CAST(cast_u8_u32, cast_u8_u32_strided, uint8_t, uint32_t)
+CAST(cast_f16_f32, cast_f16_f32_strided, half, float)
+CAST(cast_f32_f16, cast_f32_f16_strided, float, half)
#if __METAL_VERSION__ >= 310
#endif
diff --git a/candle-metal-kernels/src/indexing.metal b/candle-metal-kernels/src/indexing.metal
index 444fa322..312b27c7 100644
--- a/candle-metal-kernels/src/indexing.metal
+++ b/candle-metal-kernels/src/indexing.metal
@@ -16,16 +16,16 @@ kernel void NAME( \
if (gid >= dst_size) { \
return; \
} \
- const size_t id_i = gid / right_size / left_size; \
+ const size_t id_i = (gid / right_size) % ids_size; \
+ const INDEX_TYPENAME input_i = min(input_ids[id_i], (INDEX_TYPENAME)(src_dim_size - 1)); \
const size_t right_rank_i = gid % right_size; \
- const size_t left_rank_i = gid % left_size; \
+ const size_t left_rank_i = gid / right_size / ids_size; \
/* \
// Force prevent out of bounds indexing \
// since there doesn't seem to be a good way to force crash \
// No need to check for zero we're only allowing unsized. \
*/ \
- const INDEX_TYPENAME input_i = min(input_ids[id_i], (INDEX_TYPENAME)(src_dim_size - 1)); \
- const size_t src_i = ((input_i * right_size) + right_rank_i) * left_size + left_rank_i; \
+ const size_t src_i = left_rank_i * src_dim_size * right_size + input_i * right_size + right_rank_i; \
output[gid] = input[src_i]; \
}
@@ -75,6 +75,7 @@ kernel void FN_NAME( \
INDEX_OP(is_u32_f32, uint, float)
+INDEX_OP(is_u32_f16, uint, half)
#if __METAL_VERSION__ >= 310
diff --git a/candle-metal-kernels/src/lib.rs b/candle-metal-kernels/src/lib.rs
index 5a6bd41b..a0b852a4 100644
--- a/candle-metal-kernels/src/lib.rs
+++ b/candle-metal-kernels/src/lib.rs
@@ -1,6 +1,6 @@
use metal::{
- Buffer, CommandBufferRef, CompileOptions, ComputeCommandEncoderRef, ComputePipelineDescriptor,
- ComputePipelineState, Device, Function, Library, MTLSize,
+ Buffer, CommandBufferRef, CompileOptions, ComputeCommandEncoderRef, ComputePipelineState,
+ Device, Function, Library, MTLSize,
};
use std::collections::HashMap;
use std::ffi::c_void;
@@ -59,8 +59,8 @@ impl<T> EncoderParam for &[T] {
fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
encoder.set_bytes(
position,
- (core::mem::size_of::<T>() * data.len()) as u64,
- data.as_ptr() as *const T as *const c_void,
+ core::mem::size_of_val(data) as u64,
+ data.as_ptr() as *const c_void,
);
}
}
@@ -111,13 +111,7 @@ macro_rules! ops{
($($name:ident),+) => {
pub mod contiguous {
- #[derive(Clone, Copy)]
- pub struct Kernel(pub(crate) &'static str);
- impl std::fmt::Display for Kernel {
- fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
- write!(f, "{}", self.0)
- }
- }
+ pub struct Kernel(pub &'static str);
$(
pub mod $name {
use super::Kernel;
@@ -126,16 +120,18 @@ macro_rules! ops{
pub const BFLOAT: Kernel = Kernel(concat!(stringify!($name), "_bfloat"));
}
)+
+ pub mod copy {
+ use super::Kernel;
+ pub const FLOAT: Kernel = Kernel("copy_float");
+ pub const HALF: Kernel = Kernel("copy_half");
+ pub const BFLOAT: Kernel = Kernel("copy_bfloat");
+ pub const U32: Kernel = Kernel("copy_u32");
+ pub const U8: Kernel = Kernel("copy_u8");
+ }
}
pub mod strided {
- #[derive(Clone, Copy)]
- pub struct Kernel(pub(crate) &'static str);
- impl std::fmt::Display for Kernel {
- fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
- write!(f, "{}", self.0)
- }
- }
+ pub struct Kernel(pub &'static str);
$(
pub mod $name {
use super::Kernel;
@@ -144,12 +140,20 @@ macro_rules! ops{
pub const BFLOAT: Kernel = Kernel(concat!(stringify!($name), "_bfloat_strided"));
}
)+
+ pub mod copy {
+ use super::Kernel;
+ pub const FLOAT: Kernel = Kernel("copy_float_strided");
+ pub const HALF: Kernel = Kernel("copy_half_strided");
+ pub const BFLOAT: Kernel = Kernel("copy_bfloat_strided");
+ pub const U32: Kernel = Kernel("copy_u32_strided");
+ pub const U8: Kernel = Kernel("copy_u8_strided");
+ }
}
};
}
pub mod unary {
- ops!(cos, sin, exp, sqr, sqrt, neg, copy, log);
+ ops!(cos, sin, exp, sqr, sqrt, neg, log, gelu, ceil, floor, round, erf, gelu_erf);
}
pub mod binary {
ops!(add, sub, mul, div);
@@ -161,8 +165,12 @@ pub enum MetalKernelError {
LockError(String),
#[error("Error while loading library: {0}")]
LoadLibraryError(String),
- #[error("Error while loading function: {0}")]
+ #[error("Error while loading function: {0:?}")]
LoadFunctionError(String),
+ #[error("Failed to create compute function")]
+ FailedToCreateComputeFunction,
+ #[error("Failed to create pipeline")]
+ FailedToCreatePipeline(String),
}
impl<T> From<std::sync::PoisonError<T>> for MetalKernelError {
@@ -173,19 +181,22 @@ impl<T> From<std::sync::PoisonError<T>> for MetalKernelError {
type KernelMap<T> = HashMap<&'static str, T>;
type Libraries = HashMap<Source, Library>;
-type Functions = KernelMap<Function>;
+type Pipelines = KernelMap<ComputePipelineState>;
#[derive(Debug, Default)]
pub struct Kernels {
libraries: RwLock<Libraries>,
- funcs: RwLock<Functions>,
+ pipelines: RwLock<Pipelines>,
}
impl Kernels {
pub fn new() -> Self {
let libraries = RwLock::new(Libraries::new());
- let funcs = RwLock::new(Functions::new());
- Self { libraries, funcs }
+ let pipelines = RwLock::new(Pipelines::new());
+ Self {
+ libraries,
+ pipelines,
+ }
}
fn get_library_source(&self, source: Source) -> &'static str {
@@ -218,22 +229,43 @@ impl Kernels {
}
}
- pub fn load_function(
+ fn load_function(
&self,
device: &Device,
source: Source,
name: &'static str,
) -> Result<Function, MetalKernelError> {
- let mut funcs = self.funcs.write()?;
- if let Some(func) = funcs.get(name) {
- Ok(func.clone())
+ let func = self
+ .load_library(device, source)?
+ .get_function(name, None)
+ .map_err(|e| MetalKernelError::LoadFunctionError(e.to_string()))?;
+ Ok(func)
+ // let mut funcs = self.funcs.write()?;
+ // if let Some(func) = funcs.get(name) {
+ // Ok(func.clone())
+ // } else {
+ // funcs.insert(name, func.clone());
+ // Ok(func)
+ // }
+ }
+
+ pub fn load_pipeline(
+ &self,
+ device: &Device,
+ source: Source,
+ name: &'static str,
+ ) -> Result<ComputePipelineState, MetalKernelError> {
+ let mut pipelines = self.pipelines.write()?;
+ if let Some(pipeline) = pipelines.get(name) {
+ Ok(pipeline.clone())
} else {
- let func = self
- .load_library(device, source)?
- .get_function(name, None)
- .map_err(|e| MetalKernelError::LoadFunctionError(e.to_string()))?;
- funcs.insert(name, func.clone());
- Ok(func)
+ let func = self.load_function(device, source, name)?;
+ let pipeline = device
+ .new_compute_pipeline_state_with_function(&func)
+ .map_err(|e| MetalKernelError::FailedToCreatePipeline(e.to_string()))?;
+ pipelines.insert(name, pipeline.clone());
+
+ Ok(pipeline)
}
}
}
@@ -246,18 +278,9 @@ pub fn call_unary_contiguous(
kernel_name: unary::contiguous::Kernel,
length: usize,
input: &Buffer,
- output: &mut Buffer,
+ output: &Buffer,
) -> Result<(), MetalKernelError> {
- let func = kernels.load_function(device, Source::Unary, kernel_name.0)?;
- let pipeline_state_descriptor = ComputePipelineDescriptor::new();
- pipeline_state_descriptor.set_compute_function(Some(&func));
-
- let pipeline = device
- .new_compute_pipeline_state_with_function(
- pipeline_state_descriptor.compute_function().unwrap(),
- )
- .unwrap();
-
+ let pipeline = kernels.load_pipeline(device, Source::Unary, kernel_name.0)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
@@ -279,18 +302,10 @@ pub fn call_unary_strided(
input: &Buffer,
strides: &[usize],
offset: usize,
- output: &mut Buffer,
+ output: &Buffer,
output_offset: usize,
) -> Result<(), MetalKernelError> {
- let func = kernels.load_function(device, Source::Unary, name.0)?;
- let pipeline_state_descriptor = ComputePipelineDescriptor::new();
- pipeline_state_descriptor.set_compute_function(Some(&func));
-
- let pipeline = device
- .new_compute_pipeline_state_with_function(
- pipeline_state_descriptor.compute_function().unwrap(),
- )
- .unwrap();
+ let pipeline = kernels.load_pipeline(device, Source::Unary, name.0)?;
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder();
@@ -326,17 +341,9 @@ pub fn call_binary_contiguous(
length: usize,
left: &Buffer,
right: &Buffer,
- output: &mut Buffer,
+ output: &Buffer,
) -> Result<(), MetalKernelError> {
- let func = kernels.load_function(device, Source::Binary, kernel_name.0)?;
- let pipeline_state_descriptor = ComputePipelineDescriptor::new();
- pipeline_state_descriptor.set_compute_function(Some(&func));
-
- let pipeline = device
- .new_compute_pipeline_state_with_function(
- pipeline_state_descriptor.compute_function().unwrap(),
- )
- .unwrap();
+ let pipeline = kernels.load_pipeline(device, Source::Binary, kernel_name.0)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
@@ -363,17 +370,9 @@ pub fn call_binary_strided(
right_input: &Buffer,
right_strides: &[usize],
right_offset: usize,
- output: &mut Buffer,
+ output: &Buffer,
) -> Result<(), MetalKernelError> {
- let func = kernels.load_function(device, Source::Binary, name.0)?;
- let pipeline_state_descriptor = ComputePipelineDescriptor::new();
- pipeline_state_descriptor.set_compute_function(Some(&func));
-
- let pipeline = device
- .new_compute_pipeline_state_with_function(
- pipeline_state_descriptor.compute_function().unwrap(),
- )
- .unwrap();
+ let pipeline = kernels.load_pipeline(device, Source::Binary, name.0)?;
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder();
@@ -411,22 +410,52 @@ pub fn call_cast_contiguous(
kernel_name: &'static str,
length: usize,
input: &Buffer,
- output: &mut Buffer,
+ input_offset: usize,
+ output: &Buffer,
) -> Result<(), MetalKernelError> {
- let func = kernels.load_function(device, Source::Cast, kernel_name)?;
- let pipeline_state_descriptor = ComputePipelineDescriptor::new();
- pipeline_state_descriptor.set_compute_function(Some(&func));
+ let pipeline = kernels.load_pipeline(device, Source::Cast, kernel_name)?;
- let pipeline = device
- .new_compute_pipeline_state_with_function(
- pipeline_state_descriptor.compute_function().unwrap(),
- )
- .unwrap();
+ let encoder = command_buffer.new_compute_command_encoder();
+ encoder.set_compute_pipeline_state(&pipeline);
+
+ set_params!(encoder, (length, (input, input_offset), output));
+
+ let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
+ encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
+ encoder.end_encoding();
+ Ok(())
+}
+
+#[allow(clippy::too_many_arguments)]
+pub fn call_cast_strided(
+ device: &Device,
+ command_buffer: &CommandBufferRef,
+ kernels: &Kernels,
+ kernel_name: &'static str,
+ shape: &[usize],
+ input: &Buffer,
+ input_strides: &[usize],
+ input_offset: usize,
+ output: &Buffer,
+) -> Result<(), MetalKernelError> {
+ let pipeline = kernels.load_pipeline(device, Source::Cast, kernel_name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
- set_params!(encoder, (length, input, output));
+ let length: usize = shape.iter().product();
+
+ set_params!(
+ encoder,
+ (
+ length,
+ shape.len(),
+ shape,
+ input_strides,
+ (input, input_offset),
+ output
+ )
+ );
let (thread_group_count, thread_group_size) = linear_split(&pipeline, length);
@@ -435,7 +464,6 @@ pub fn call_cast_contiguous(
Ok(())
}
-#[allow(clippy::too_many_arguments)]
pub fn call_reduce_contiguous(
device: &Device,
command_buffer: &CommandBufferRef,
@@ -444,24 +472,19 @@ pub fn call_reduce_contiguous(
length: usize,
out_length: usize,
input: &Buffer,
- output: &mut Buffer,
+ input_offset: usize,
+ output: &Buffer,
) -> Result<(), MetalKernelError> {
- let func = kernels.load_function(device, Source::Reduce, kernel_name)?;
- let pipeline_state_descriptor = ComputePipelineDescriptor::new();
- pipeline_state_descriptor.set_compute_function(Some(&func));
-
- let pipeline = device
- .new_compute_pipeline_state_with_function(
- pipeline_state_descriptor.compute_function().unwrap(),
- )
- .unwrap();
-
+ let pipeline = kernels.load_pipeline(device, Source::Reduce, kernel_name)?;
let elements_to_sum = length / out_length;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
- set_params!(encoder, (length, elements_to_sum, input, output));
+ set_params!(
+ encoder,
+ (length, elements_to_sum, (input, input_offset), output)
+ );
let thread_group_count = MTLSize {
width: out_length as u64,
@@ -495,18 +518,9 @@ pub fn call_last_softmax(
length: usize,
elements_to_sum: usize,
input: &Buffer,
- output: &mut Buffer,
+ output: &Buffer,
) -> Result<(), MetalKernelError> {
- let func = kernels.load_function(device, Source::Reduce, kernel_name)?;
- let pipeline_state_descriptor = ComputePipelineDescriptor::new();
- pipeline_state_descriptor.set_compute_function(Some(&func));
-
- let pipeline = device
- .new_compute_pipeline_state_with_function(
- pipeline_state_descriptor.compute_function().unwrap(),
- )
- .unwrap();
-
+ let pipeline = kernels.load_pipeline(device, Source::Reduce, kernel_name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
@@ -542,21 +556,14 @@ pub fn call_affine(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,
+ name: &'static str,
size: usize,
input: &Buffer,
- output: &mut Buffer,
+ output: &Buffer,
mul: f32,
add: f32,
) -> Result<(), MetalKernelError> {
- let func = kernels.load_function(device, Source::Affine, "affine_float")?;
- let pipeline_state_descriptor = ComputePipelineDescriptor::new();
- pipeline_state_descriptor.set_compute_function(Some(&func));
-
- let pipeline = device
- .new_compute_pipeline_state_with_function(
- pipeline_state_descriptor.compute_function().unwrap(),
- )
- .unwrap();
+ let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
@@ -570,6 +577,45 @@ pub fn call_affine(
}
#[allow(clippy::too_many_arguments)]
+pub fn call_affine_strided(
+ device: &Device,
+ command_buffer: &CommandBufferRef,
+ kernels: &Kernels,
+ name: &'static str,
+ shape: &[usize],
+ input: &Buffer,
+ input_stride: &[usize],
+ input_offset: usize,
+ output: &Buffer,
+ mul: f32,
+ add: f32,
+) -> Result<(), MetalKernelError> {
+ let pipeline = kernels.load_pipeline(device, Source::Affine, name)?;
+ let size: usize = shape.iter().product();
+
+ let encoder = command_buffer.new_compute_command_encoder();
+ encoder.set_compute_pipeline_state(&pipeline);
+
+ set_params!(
+ encoder,
+ (
+ size,
+ shape.len(),
+ shape,
+ input_stride,
+ mul,
+ add,
+ (input, input_offset),
+ output
+ )
+ );
+
+ let (thread_group_count, thread_group_size) = linear_split(&pipeline, size);
+ encoder.dispatch_thread_groups(thread_group_count, thread_group_size);
+ encoder.end_encoding();
+ Ok(())
+}
+
pub fn call_where_cond_strided(
device: &Device,
command_buffer: &CommandBufferRef,
@@ -582,17 +628,9 @@ pub fn call_where_cond_strided(
(left_stride, left_offset): (&[usize], usize),
right: &Buffer,
(right_stride, right_offset): (&[usize], usize),
- output: &mut Buffer,
+ output: &Buffer,
) -> Result<(), MetalKernelError> {
- let func = kernels.load_function(device, Source::Ternary, name)?;
- let pipeline_state_descriptor = ComputePipelineDescriptor::new();
- pipeline_state_descriptor.set_compute_function(Some(&func));
-
- let pipeline = device
- .new_compute_pipeline_state_with_function(
- pipeline_state_descriptor.compute_function().unwrap(),
- )
- .unwrap();
+ let pipeline = kernels.load_pipeline(device, Source::Ternary, name)?;
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
@@ -634,17 +672,14 @@ pub fn call_index_select(
dim: usize,
input: &Buffer,
ids: &Buffer,
- output: &mut Buffer,
+ output: &Buffer,
) -> Result<(), MetalKernelError> {
let left_size: usize = shape[..dim].iter().product();
let right_size: usize = shape[dim + 1..].iter().product();
let src_dim_size = shape[dim];
let dst_el = ids_size * left_size * right_size;
- let func = kernels.load_function(device, Source::Indexing, name)?;
- let pipeline = device
- .new_compute_pipeline_state_with_function(&func)
- .unwrap();
+ let pipeline = kernels.load_pipeline(device, Source::Indexing, name)?;
let encoder = command_buffer.new_compute_command_encoder();
diff --git a/candle-metal-kernels/src/reduce.metal b/candle-metal-kernels/src/reduce.metal
index c6984474..867877fb 100644
--- a/candle-metal-kernels/src/reduce.metal
+++ b/candle-metal-kernels/src/reduce.metal
@@ -1,6 +1,8 @@
#include <metal_stdlib>
using namespace metal;
+#define MAX(x, y) ((x) > (y) ? (x) : (y))
+
METAL_FUNC uint get_strided_index(
uint idx,
constant size_t &num_dims,
@@ -16,18 +18,18 @@ METAL_FUNC uint get_strided_index(
return strided_i;
}
-constant int THREADGROUP_SIZE = 256;
+constant int THREADGROUP_SIZE = 1024;
-# define REDUCE(FN, NAME, TYPENAME) \
+# define REDUCE(FN, NAME, T) \
kernel void NAME( \
constant size_t &src_numel, \
constant size_t &el_to_sum_per_block, \
- device const TYPENAME *src, \
- device TYPENAME *dst, \
+ device const T *src, \
+ device T *dst, \
uint id [[ thread_position_in_grid ]], \
uint tid [[ thread_index_in_threadgroup ]], \
uint dst_id [[ threadgroup_position_in_grid ]], \
- uint blockDim [[ threads_per_threadgroup ]] \
+ uint block_dim [[ threads_per_threadgroup ]] \
) { \
\
threadgroup float shared_memory[THREADGROUP_SIZE]; \
@@ -45,10 +47,10 @@ kernel void NAME( \
// TODO: Fast version for the contiguous case. \
// size_t strided_i = get_strided_index(idx, num_dims, dims, strides); \
*/ \
- TYPENAME x = shared_memory[tid]; \
- TYPENAME y = src[idx]; \
+ T x = shared_memory[tid]; \
+ T y = src[idx]; \
shared_memory[tid] = FN; \
- idx += blockDim; \
+ idx += block_dim; \
} \
\
threadgroup_barrier(mem_flags::mem_none); \
@@ -56,10 +58,10 @@ kernel void NAME( \
/* \
// reduction in shared memory \
*/ \
- for (uint s = blockDim / 2; s > 0; s >>= 1) { \
+ for (uint s = block_dim / 2; s > 0; s >>= 1) { \
if (tid < s) { \
- TYPENAME x = shared_memory[tid]; \
- TYPENAME y = shared_memory[tid + s]; \
+ T x = shared_memory[tid]; \
+ T y = shared_memory[tid + s]; \
shared_memory[tid] = FN; \
} \
threadgroup_barrier(mem_flags::mem_none); \
@@ -68,72 +70,74 @@ kernel void NAME( \
dst[dst_id] = shared_memory[0]; \
} \
-kernel void softmax_float(
- constant size_t &src_numel,
- constant size_t &el_to_sum_per_block,
- device const float *src,
- device float *dst,
- uint id [[ thread_position_in_grid ]],
- uint tid [[ thread_index_in_threadgroup ]],
- uint dst_id [[ threadgroup_position_in_grid ]],
- uint blockDim [[ threads_per_threadgroup ]]
-) {
-
- threadgroup float shared_memory[THREADGROUP_SIZE];
-
- shared_memory[tid] = -INFINITY;
- // Elements summed in this block range from dst_id * el_to_sum_per_block
- // to (dst_id + 1) * el_to_sum_per_block.
- size_t start_idx = dst_id * el_to_sum_per_block;
- size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
- size_t idx = start_idx + tid;
-
- while (idx < stop_idx) {
- // TODO: Fast version for the contiguous case.
- shared_memory[tid] = max(shared_memory[tid], src[idx]);
- idx += blockDim;
- }
-
- threadgroup_barrier(mem_flags::mem_none);
-
- // reduction in shared memory
- for (uint s = blockDim / 2; s > 0; s >>= 1) {
- if (tid < s) {
- shared_memory[tid] = max(shared_memory[tid], shared_memory[tid + s]);
- }
- threadgroup_barrier(mem_flags::mem_none);
- }
-
- float max = shared_memory[0];
-
- shared_memory[tid] = 0;
-
- // Restart
- idx = start_idx + tid;
- while (idx < stop_idx) {
- // TODO: Fast version for the contiguous case.
- const float val = exp(src[idx] - max);
- dst[idx] = val;
- shared_memory[tid] += val;
- idx += blockDim;
- }
- // reduction in shared memory
- for (uint s = blockDim / 2; s > 0; s >>= 1) {
- if (tid < s) {
- shared_memory[tid] += shared_memory[tid + s];
- }
- threadgroup_barrier(mem_flags::mem_none);
- }
-
- const float inv_acc = 1/shared_memory[0];
- idx = start_idx + tid;
- while (idx < stop_idx) {
- dst[idx] *= inv_acc;
- idx += blockDim;
- }
-}
-
REDUCE(x + y, fast_sum_float, float)
REDUCE(x * y, fast_mul_float, float)
REDUCE(max(x, y), fast_max_float, float)
+
+#define SOFTMAX(NAME, T) \
+kernel void NAME( \
+ constant size_t &src_numel, \
+ constant size_t &el_to_sum_per_block, \
+ device const T *src, \
+ device T *dst, \
+ \
+ uint id [[ thread_position_in_grid ]], \
+ uint tid [[ thread_index_in_threadgroup ]], \
+ uint dst_id [[ threadgroup_position_in_grid ]], \
+ uint block_dim [[ threads_per_threadgroup ]] \
+) { \
+ threadgroup float shared_memory[THREADGROUP_SIZE]; \
+ shared_memory[tid] = -INFINITY; \
+ size_t start_idx = dst_id * el_to_sum_per_block; \
+ size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel); \
+ size_t idx = start_idx + tid; \
+ \
+ threadgroup_barrier(mem_flags::mem_threadgroup); \
+ \
+ while (idx < stop_idx) { \
+ shared_memory[tid] = MAX(shared_memory[tid], src[idx]); \
+ idx += block_dim; \
+ } \
+ \
+ threadgroup_barrier(mem_flags::mem_threadgroup); \
+ \
+ for (uint s = block_dim / 2; s > 0; s >>= 1) { \
+ if (tid < s) { \
+ shared_memory[tid] = MAX(shared_memory[tid], shared_memory[tid + s]); \
+ } \
+ } \
+ \
+ threadgroup_barrier(mem_flags::mem_threadgroup); \
+ \
+ float _max = shared_memory[0]; \
+ \
+ shared_memory[tid] = 0; \
+ \
+ idx = start_idx + tid; \
+ while (idx < stop_idx) { \
+ const T val = T(exp(src[idx] - _max)); \
+ dst[idx] = val; \
+ shared_memory[tid] += val; \
+ idx += block_dim; \
+ } \
+ for (uint s = block_dim / 2; s > 0; s >>= 1) { \
+ if (tid < s) { \
+ shared_memory[tid] += shared_memory[tid + s]; \
+ } \
+ threadgroup_barrier(mem_flags::mem_threadgroup); \
+ } \
+ \
+ const T inv_acc = T(1/shared_memory[0]); \
+ idx = start_idx + tid; \
+ while (idx < stop_idx) { \
+ dst[idx] *= inv_acc; \
+ idx += block_dim; \
+ } \
+} \
+
+SOFTMAX(softmax_float, float)
+SOFTMAX(softmax_half, half)
+#if __METAL_VERSION__ >= 310
+SOFTMAX(softmax_bfloat, bfloat)
+#endif
diff --git a/candle-metal-kernels/src/ternary.metal b/candle-metal-kernels/src/ternary.metal
index 0945b355..1f9cb38a 100644
--- a/candle-metal-kernels/src/ternary.metal
+++ b/candle-metal-kernels/src/ternary.metal
@@ -32,6 +32,9 @@ kernel void FN_NAME( \
device TYPENAME *out ,\
uint i [[ thread_position_in_grid ]] \
) { \
+ if (i >= numel){ \
+ return; \
+ } \
uint strided_i = get_strided_index(i, num_dims, dims, strides); \
uint strided_i_t = get_strided_index(i, num_dims, dims, strides_t); \
uint strided_i_f = get_strided_index(i, num_dims, dims, strides_f); \
diff --git a/candle-metal-kernels/src/tests.rs b/candle-metal-kernels/src/tests.rs
index 2330d48d..66dc8d01 100644
--- a/candle-metal-kernels/src/tests.rs
+++ b/candle-metal-kernels/src/tests.rs
@@ -1,5 +1,5 @@
use super::*;
-use half::f16;
+use half::{bf16, f16};
use metal::{CompileOptions, Device, MTLResourceOptions, MTLSize, NSUInteger};
fn new_buffer<T>(device: &Device, data: &[T]) -> Buffer {
@@ -23,13 +23,18 @@ fn approx_f16(v: Vec<f16>, digits: i32) -> Vec<f32> {
v.iter().map(|t| f32::round(t.to_f32() * b) / b).collect()
}
+fn approx_bf16(v: Vec<bf16>, digits: i32) -> Vec<f32> {
+ let b = 10f32.powi(digits);
+ v.iter().map(|t| f32::round(t.to_f32() * b) / b).collect()
+}
+
fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> {
let device = device();
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
- let mut output = new_buffer(&device, v);
+ let output = new_buffer(&device, v);
call_unary_contiguous(
&device,
command_buffer,
@@ -37,7 +42,7 @@ fn run<T: Clone>(v: &[T], name: unary::contiguous::Kernel) -> Vec<T> {
name,
v.len(),
&input,
- &mut output,
+ &output,
)
.unwrap();
command_buffer.commit();
@@ -53,7 +58,7 @@ fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> V
let options = MTLResourceOptions::StorageModeManaged;
let left = new_buffer(&device, x);
let right = new_buffer(&device, y);
- let mut output = device.new_buffer(std::mem::size_of_val(x) as u64, options);
+ let output = device.new_buffer(std::mem::size_of_val(x) as u64, options);
call_binary_contiguous(
&device,
command_buffer,
@@ -62,7 +67,7 @@ fn run_binary<T: Clone>(x: &[T], y: &[T], name: binary::contiguous::Kernel) -> V
x.len(),
&left,
&right,
- &mut output,
+ &output,
)
.unwrap();
command_buffer.commit();
@@ -81,7 +86,7 @@ fn run_strided<T: Clone>(
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
- let mut output = new_buffer(&device, v);
+ let output = new_buffer(&device, v);
let kernels = Kernels::new();
call_unary_strided(
&device,
@@ -92,7 +97,7 @@ fn run_strided<T: Clone>(
&input,
strides,
offset,
- &mut output,
+ &output,
0,
)
.unwrap();
@@ -220,7 +225,9 @@ fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
- let mut output = new_buffer(&device, v);
+ let options = MTLResourceOptions::StorageModeManaged;
+ let size = (v.len() * std::mem::size_of::<U>()) as u64;
+ let output = device.new_buffer(size, options);
call_cast_contiguous(
&device,
@@ -229,7 +236,8 @@ fn cast<T: Clone, U: Clone>(v: &[T], name: &'static str) -> Vec<U> {
name,
v.len(),
&input,
- &mut output,
+ 0,
+ &output,
)
.unwrap();
command_buffer.commit();
@@ -245,11 +253,17 @@ fn cast_u32_f32() {
assert_eq!(approx(results, 4), vec![1.0f32, 2.0, 3.0]);
assert_eq!(approx(expected, 4), vec![1.0f32, 2.0, 3.0]);
+ let v = vec![1.0f32, 2.0, 3.0];
+ let input: Vec<f16> = v.iter().map(|v| f16::from_f32(*v)).collect();
+ let results: Vec<f32> = cast(&input, "cast_f16_f32");
+ assert_eq!(results, vec![1.0f32, 2.0, 3.0]);
+
let v = vec![1.0f32; 10_000];
- let results = run(&v, unary::contiguous::cos::FLOAT);
- let expected: Vec<_> = v.iter().map(|v| v.cos()).collect();
- assert_eq!(approx(results, 4), vec![0.5403; 10_000]);
- assert_eq!(approx(expected, 4), vec![0.5403; 10_000]);
+ let input: Vec<f16> = v.iter().map(|v| f16::from_f32(*v)).collect();
+ let results: Vec<f32> = cast(&input, "cast_f16_f32");
+ assert_eq!(results.len(), 10_000);
+ assert_eq!(&results[..10], vec![1.0f32; 10]);
+ assert_eq!(results, vec![1.0f32; 10_000]);
}
fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
@@ -259,7 +273,7 @@ fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
- let mut output = new_buffer(&device, v);
+ let output = new_buffer(&device, v);
let size = v.len();
@@ -267,9 +281,45 @@ fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
&device,
command_buffer,
&kernels,
+ "affine_float",
size,
&input,
- &mut output,
+ &output,
+ mul as f32,
+ add as f32,
+ )
+ .unwrap();
+ command_buffer.commit();
+ command_buffer.wait_until_completed();
+
+ output.read_to_vec::<T>(v.len())
+}
+
+fn _run_affine_strided<T: Clone>(
+ v: &[T],
+ shape: &[usize],
+ strides: &[usize],
+ mul: f64,
+ add: f64,
+) -> Vec<T> {
+ let device = device();
+ let kernels = Kernels::new();
+ let command_queue = device.new_command_queue();
+ let command_buffer = command_queue.new_command_buffer();
+
+ let input = new_buffer(&device, v);
+ let output = new_buffer(&device, v);
+
+ call_affine_strided(
+ &device,
+ command_buffer,
+ &kernels,
+ "affine_float",
+ shape,
+ &input,
+ strides,
+ 0,
+ &output,
mul as f32,
add as f32,
)
@@ -295,6 +345,16 @@ fn affine() {
assert_eq!(result, vec![2.6; 40_000]);
}
+// #[test]
+// fn affine_strided() {
+// let input = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0];
+// let mul = 1.5;
+// let add = 1.1;
+// let result = run_affine_(&input, mul, add);
+// assert_eq!(result, vec![2.6, 4.1, 5.6, 7.1, 8.6, 10.1, 11.6, 13.1]);
+
+// }
+
#[test]
fn index_select() {
let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
@@ -313,7 +373,26 @@ fn index_select() {
result,
vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 1.0f32, 2.0, 3.0, 4.0, 5.0]
);
+}
+
+#[test]
+fn index_select_f16() {
+ let embedding: Vec<_> = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
+ .into_iter()
+ .map(|x| f16::from_f32(x))
+ .collect();
+ let shape = [5, 2];
+ let ids = [0u32, 4, 2];
+ let dim = 0;
+ let result = run_index_select(&embedding, &shape, &ids, dim);
+ assert_eq!(
+ approx_f16(result, 4),
+ vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0]
+ );
+}
+#[test]
+fn index_select_dim1() {
let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
let shape = [5, 2];
let ids = [0u32, 1, 0];
@@ -321,7 +400,7 @@ fn index_select() {
let result = run_index_select(&embedding, &shape, &ids, dim);
assert_eq!(
result,
- vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 1.0f32, 2.0, 3.0, 4.0, 5.0]
+ vec![1.0f32, 2.0, 1.0, 3.0, 4.0, 3.0, 5.0, 6.0, 5.0, 7.0, 8.0f32, 7.0, 9.0, 10.0, 9.0]
);
}
@@ -341,20 +420,26 @@ fn run_index_select<T: Clone, I: Clone + std::fmt::Debug>(
let left_size: usize = shape[..dim].iter().product();
let right_size: usize = shape[dim + 1..].iter().product();
let dst_el = ids.len() * left_size * right_size;
- let mut dst_buffer = new_buffer(&device, &vec![0.0f32; dst_el]);
+ let dst_buffer = new_buffer(&device, &vec![0.0f32; dst_el]);
+
+ let name = match core::mem::size_of::<T>() {
+ 4 => "is_u32_f32",
+ 2 => "is_u32_f16",
+ _ => unimplemented!(),
+ };
let kernels = Kernels::new();
call_index_select(
&device,
&command_buffer,
&kernels,
- "is_u32_f32",
+ name,
shape,
ids.len(),
dim,
&embeddings_buffer,
&ids_buffer,
- &mut dst_buffer,
+ &dst_buffer,
)
.unwrap();
@@ -451,7 +536,7 @@ fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T
let input = new_buffer(&device, v);
let options = MTLResourceOptions::StorageModeManaged;
- let mut output = device.new_buffer((out_length * core::mem::size_of::<T>()) as u64, options);
+ let output = device.new_buffer((out_length * core::mem::size_of::<T>()) as u64, options);
call_reduce_contiguous(
&device,
command_buffer,
@@ -460,7 +545,8 @@ fn run_reduce<T: Clone>(v: &[T], out_length: usize, name: &'static str) -> Vec<T
v.len(),
out_length,
&input,
- &mut output,
+ 0,
+ &output,
)
.unwrap();
command_buffer.commit();
@@ -475,7 +561,7 @@ fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'sta
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let input = new_buffer(&device, v);
- let mut output = new_buffer(&device, v);
+ let output = new_buffer(&device, v);
call_last_softmax(
&device,
command_buffer,
@@ -484,7 +570,7 @@ fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'sta
v.len(),
last_dim,
&input,
- &mut output,
+ &output,
)
.unwrap();
command_buffer.commit();
@@ -536,6 +622,28 @@ fn softmax() {
approx(results, 4),
vec![0.0900, 0.2447, 0.6652, 0.0900, 0.2447, 0.6652]
);
+
+ let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]
+ .iter()
+ .map(|v| f16::from_f32(*v))
+ .collect::<Vec<_>>();
+ let last_dim = 6;
+ let results = run_softmax(&v, last_dim, "softmax_half");
+ assert_eq!(
+ approx_f16(results, 4),
+ vec![0.0043, 0.0116, 0.0316, 0.0858, 0.2332, 0.6338]
+ );
+
+ let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0]
+ .iter()
+ .map(|v| bf16::from_f32(*v))
+ .collect::<Vec<_>>();
+ let last_dim = 6;
+ let results = run_softmax(&v, last_dim, "softmax_bfloat");
+ assert_eq!(
+ approx_bf16(results, 4),
+ vec![0.0043, 0.0116, 0.0315, 0.0859, 0.2324, 0.6328]
+ );
}
fn run_where_cond<I: Clone, T: Clone>(
@@ -571,7 +679,7 @@ fn run_where_cond<I: Clone, T: Clone>(
options,
);
- let mut output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options);
+ let output = device.new_buffer((length * core::mem::size_of::<T>()) as u64, options);
call_where_cond_strided(
&device,
command_buffer,
@@ -584,7 +692,7 @@ fn run_where_cond<I: Clone, T: Clone>(
(&left_stride, left_offset),
&right,
(&cond_stride, cond_offset),
- &mut output,
+ &output,
)
.unwrap();
command_buffer.commit();
diff --git a/candle-metal-kernels/src/unary.metal b/candle-metal-kernels/src/unary.metal
index eb6424e8..88139af9 100644
--- a/candle-metal-kernels/src/unary.metal
+++ b/candle-metal-kernels/src/unary.metal
@@ -1,4 +1,7 @@
#include <metal_stdlib>
+#include <metal_math>
+#
+using namespace metal;
METAL_FUNC uint get_strided_index(
uint idx,
@@ -17,10 +20,39 @@ METAL_FUNC uint get_strided_index(
template <typename T> METAL_FUNC T sqr(T in){ return in * in; }
template <typename T> METAL_FUNC T neg(T in){ return -in; }
+template <typename T> METAL_FUNC T erf(T in){
+ float x = (float) in;
+ // constants
+ float a1 = 0.254829592;
+ float a2 = -0.284496736;
+ float a3 = 1.421413741;
+ float a4 = -1.453152027;
+ float a5 = 1.061405429;
+ float p = 0.3275911;
+
+ // Save the sign of x
+ int sign = 1;
+ if (x < 0)
+ sign = -1;
+ x = fabs(x);
+
+ // A&S formula 7.1.26
+ float t = 1.0/(1.0 + p*x);
+ float y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x);
+
+ return T(sign*y);
+}
template <typename T> METAL_FUNC T id(T in){ return in; }
+template <typename T> METAL_FUNC T gelu_erf(T x){ return T(x * (1 + erf(x * M_SQRT1_2_F)) / 2); }
+template <typename T> METAL_FUNC T gelu(T x){
+ T x_sq = x * x;
+ T x_cube = x_sq * x;
+ T alpha = x + static_cast<T>(0.044715) * x_cube;
+ T beta = (static_cast<T>(M_2_SQRTPI_F * M_SQRT1_2_F) * alpha);
+ return static_cast<T>(0.5) * x * (static_cast<T>(1.0) + T(tanh(beta)));
+}
-using namespace metal;
#define UNARY(FN, TYPENAME, FN_NAME, FN_NAME_STRIDED) \
kernel void FN_NAME( \
@@ -64,8 +96,16 @@ UNARY_OP(sqrt)
UNARY_OP(neg)
UNARY_OP(exp)
UNARY_OP(log)
+UNARY_OP(gelu)
+UNARY_OP(ceil)
+UNARY_OP(floor)
+UNARY_OP(round)
+UNARY_OP(gelu_erf)
+UNARY_OP(erf)
UNARY(id, float, copy_float, copy_float_strided)
UNARY(id, half, copy_half, copy_half_strided)
+UNARY(id, uint8_t, copy_u8, copy_u8_strided)
+UNARY(id, uint32_t, copy_u32, copy_u32_strided)
#if __METAL_VERSION__ >= 310
BFLOAT_UNARY_OP(cos)
@@ -75,6 +115,12 @@ BFLOAT_UNARY_OP(sqrt)
BFLOAT_UNARY_OP(neg)
BFLOAT_UNARY_OP(exp)
BFLOAT_UNARY_OP(log)
+BFLOAT_UNARY_OP(gelu)
+BFLOAT_UNARY_OP(ceil)
+BFLOAT_UNARY_OP(floor)
+BFLOAT_UNARY_OP(round)
+BFLOAT_UNARY_OP(gelu_erf)
+BFLOAT_UNARY_OP(erf)
UNARY(id, bfloat, copy_bfloat, copy_bfloat_strided)
#endif
diff --git a/candle-metal-kernels/examples/affine.rs b/candle-metal-kernels/tmp/affine.rs
index b8005dc0..cd019056 100644
--- a/candle-metal-kernels/examples/affine.rs
+++ b/candle-metal-kernels/tmp/affine.rs
@@ -50,6 +50,7 @@ fn run_affine_bench<T: Clone>(device: &Device, kernels: &Kernels, v: &[T]) {
&device,
command_buffer,
&kernels,
+ "affine_float",
v.len(),
&input,
&mut output,
diff --git a/candle-metal-kernels/examples/binary.rs b/candle-metal-kernels/tmp/binary.rs
index af5a8bdc..af5a8bdc 100644
--- a/candle-metal-kernels/examples/binary.rs
+++ b/candle-metal-kernels/tmp/binary.rs
diff --git a/candle-metal-kernels/examples/cast.rs b/candle-metal-kernels/tmp/cast.rs
index 090f510d..090f510d 100644
--- a/candle-metal-kernels/examples/cast.rs
+++ b/candle-metal-kernels/tmp/cast.rs
diff --git a/candle-metal-kernels/examples/unary.rs b/candle-metal-kernels/tmp/unary.rs
index 7039c098..66cf25c0 100644
--- a/candle-metal-kernels/examples/unary.rs
+++ b/candle-metal-kernels/tmp/unary.rs
@@ -147,7 +147,7 @@ fn run_unary_bench<T: Clone>(
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
- kernel_name.to_string(),
+ kernel_name.0,
v.len(),
iterations,
total_time,
@@ -159,7 +159,7 @@ fn run_unary_bench<T: Clone>(
let shape = vec![2, 5_000];
let strides = vec![2, 1];
let offset = 0;
- for kernel_name in strided {
+ for kernel_name in &strided {
let total_time = autoreleasepool(|| {
let command_buffer = command_queue.new_command_buffer();
let start = Instant::now();
@@ -187,7 +187,7 @@ fn run_unary_bench<T: Clone>(
println!(
"{0: <5} | {1: <19} | {2: <6} | {3: <5} | {4: <11?} | {5: <11?}",
type_name::<T>().split("::").last().unwrap(),
- kernel_name.to_string(),
+ kernel_name.0,
v.len(),
iterations,
total_time,
diff --git a/candle-nn/Cargo.toml b/candle-nn/Cargo.toml
index d3f43c73..45298907 100644
--- a/candle-nn/Cargo.toml
+++ b/candle-nn/Cargo.toml
@@ -19,6 +19,7 @@ num-traits = { workspace = true }
rayon = { workspace = true }
safetensors = { workspace = true }
serde = { workspace = true }
+candle-metal-kernels = { path = "../candle-metal-kernels", version = "0.3.0", optional = true }
[dev-dependencies]
anyhow = { workspace = true }
@@ -29,3 +30,4 @@ default = []
accelerate = ["dep:accelerate-src", "candle/accelerate"]
cuda = ["candle/cuda"]
mkl = ["dep:intel-mkl-src", "candle/mkl"]
+metal = ["candle/metal", "dep:candle-metal-kernels"]
diff --git a/candle-nn/src/ops.rs b/candle-nn/src/ops.rs
index a0269e59..350bc663 100644
--- a/candle-nn/src/ops.rs
+++ b/candle-nn/src/ops.rs
@@ -201,6 +201,46 @@ impl candle::CustomOp1 for SoftmaxLastDim {
};
Ok((dst, layout.shape().clone()))
}
+
+ #[cfg(feature = "metal")]
+ fn metal_fwd(
+ &self,
+ storage: &candle::MetalStorage,
+ layout: &Layout,
+ ) -> Result<(candle::MetalStorage, Shape)> {
+ use candle::{backend::BackendStorage, DType};
+ let device = storage.device();
+ let command_buffer = device.command_buffer();
+ let kernels = device.kernels();
+ let name = match storage.dtype() {
+ DType::F32 => "softmax_float",
+ DType::F16 => "softmax_half",
+ DType::BF16 => "softmax_bfloat",
+ dtype => candle::bail!("softmax-last-dim is not implemented for {dtype:?}"),
+ };
+
+ let n = layout.stride().len();
+ if !(layout.stride()[n - 1] == 1 && layout.start_offset() == 0) {
+ candle::bail!("Non contiguous softmax-last-dim is not implemented");
+ }
+
+ let last_dim = layout.dims()[layout.shape().rank() - 1];
+ let elem_count = layout.shape().elem_count();
+ let mut output = device.new_buffer(elem_count, storage.dtype());
+ candle_metal_kernels::call_last_softmax(
+ device.metal_device(),
+ &command_buffer,
+ &kernels,
+ name,
+ elem_count,
+ last_dim,
+ storage.buffer(),
+ &mut output,
+ )
+ .unwrap();
+ let newstorage = candle::MetalStorage::new(output, device.clone(), storage.dtype());
+ Ok((newstorage, layout.shape().clone()))
+ }
}
pub fn softmax_last_dim(xs: &Tensor) -> Result<Tensor> {