summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--README.md3
-rw-r--r--candle-examples/examples/gemma/README.md27
-rw-r--r--candle-examples/examples/gemma/main.rs254
-rw-r--r--candle-transformers/src/models/gemma.rs380
-rw-r--r--candle-transformers/src/models/mod.rs1
5 files changed, 665 insertions, 0 deletions
diff --git a/README.md b/README.md
index 5c65ef68..0119684e 100644
--- a/README.md
+++ b/README.md
@@ -63,6 +63,8 @@ We also provide a some command line based examples using state of the art models
- [LLaMA and LLaMA-v2](./candle-examples/examples/llama/): general LLM, includes
the SOLAR-10.7B variant.
- [Falcon](./candle-examples/examples/falcon/): general LLM.
+- [Gemma](./candle-examples/examples/gemma/): 2b and 7b general LLMs from Google
+ Deepmind.
- [Phi-1, Phi-1.5, and Phi-2](./candle-examples/examples/phi/): 1.3b and 2.7b general LLMs with performance on par with LLaMA-v2 7b.
- [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM
pre-trained on 1T tokens of English and code datasets. Also supports
@@ -190,6 +192,7 @@ If you have an addition to this list, please submit a pull request.
- StarCoder.
- Phi 1, 1.5, and 2.
- Mamba, Minimal Mamba
+ - Gemma 2b and 7b.
- Mistral 7b v0.1.
- Mixtral 8x7b v0.1.
- StableLM-3B-4E1T, StableLM-2-1.6B, Stable-Code-3B.
diff --git a/candle-examples/examples/gemma/README.md b/candle-examples/examples/gemma/README.md
new file mode 100644
index 00000000..8319cf44
--- /dev/null
+++ b/candle-examples/examples/gemma/README.md
@@ -0,0 +1,27 @@
+# candle-mistral: 2b and 7b LLMs from Google DeepMind
+
+[Gemma](https://ai.google.dev/gemma/docs) is a collection of lightweight open
+models published by Google Deepmind with a 2b and a 7b variant.
+
+In order to use the example below, you have to accept the license on the
+[HuggingFace Hub Gemma repo](https://huggingface.co/google/gemma-7b) and set up
+your access token via the [HuggingFace cli login
+command](https://huggingface.co/docs/huggingface_hub/guides/cli#huggingface-cli-login).
+
+## Running the example
+
+```bash
+$ cargo run --example gemma --release -- --prompt "fn count_primes(max_n: usize)"
+fn count_primes(max_n: usize) -> usize {
+ let mut primes = vec![true; max_n];
+ for i in 2..=max_n {
+ if primes[i] {
+ for j in i * i..max_n {
+ primes[j] = false;
+ }
+ }
+ }
+ primes.len()
+}
+```
+
diff --git a/candle-examples/examples/gemma/main.rs b/candle-examples/examples/gemma/main.rs
new file mode 100644
index 00000000..a4a1b3de
--- /dev/null
+++ b/candle-examples/examples/gemma/main.rs
@@ -0,0 +1,254 @@
+#[cfg(feature = "mkl")]
+extern crate intel_mkl_src;
+
+#[cfg(feature = "accelerate")]
+extern crate accelerate_src;
+
+use anyhow::{Error as E, Result};
+use clap::Parser;
+
+use candle_transformers::models::gemma::{Config, Model};
+
+use candle::{DType, Device, Tensor};
+use candle_examples::token_output_stream::TokenOutputStream;
+use candle_nn::VarBuilder;
+use candle_transformers::generation::LogitsProcessor;
+use hf_hub::{api::sync::Api, Repo, RepoType};
+use tokenizers::Tokenizer;
+
+struct TextGeneration {
+ model: Model,
+ device: Device,
+ tokenizer: TokenOutputStream,
+ logits_processor: LogitsProcessor,
+ repeat_penalty: f32,
+ repeat_last_n: usize,
+}
+
+impl TextGeneration {
+ #[allow(clippy::too_many_arguments)]
+ fn new(
+ model: Model,
+ tokenizer: Tokenizer,
+ seed: u64,
+ temp: Option<f64>,
+ top_p: Option<f64>,
+ repeat_penalty: f32,
+ repeat_last_n: usize,
+ device: &Device,
+ ) -> Self {
+ let logits_processor = LogitsProcessor::new(seed, temp, top_p);
+ Self {
+ model,
+ tokenizer: TokenOutputStream::new(tokenizer),
+ logits_processor,
+ repeat_penalty,
+ repeat_last_n,
+ device: device.clone(),
+ }
+ }
+
+ fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
+ use std::io::Write;
+ self.tokenizer.clear();
+ let mut tokens = self
+ .tokenizer
+ .tokenizer()
+ .encode(prompt, true)
+ .map_err(E::msg)?
+ .get_ids()
+ .to_vec();
+ for &t in tokens.iter() {
+ if let Some(t) = self.tokenizer.next_token(t)? {
+ print!("{t}")
+ }
+ }
+ std::io::stdout().flush()?;
+
+ let mut generated_tokens = 0usize;
+ let eos_token = match self.tokenizer.get_token("</s>") {
+ Some(token) => token,
+ None => anyhow::bail!("cannot find the </s> token"),
+ };
+ let start_gen = std::time::Instant::now();
+ for index in 0..sample_len {
+ let context_size = if index > 0 { 1 } else { tokens.len() };
+ let start_pos = tokens.len().saturating_sub(context_size);
+ let ctxt = &tokens[start_pos..];
+ let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
+ let logits = self.model.forward(&input, start_pos)?;
+ let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
+ let logits = if self.repeat_penalty == 1. {
+ logits
+ } else {
+ let start_at = tokens.len().saturating_sub(self.repeat_last_n);
+ candle_transformers::utils::apply_repeat_penalty(
+ &logits,
+ self.repeat_penalty,
+ &tokens[start_at..],
+ )?
+ };
+
+ let next_token = self.logits_processor.sample(&logits)?;
+ tokens.push(next_token);
+ generated_tokens += 1;
+ if next_token == eos_token {
+ break;
+ }
+ if let Some(t) = self.tokenizer.next_token(next_token)? {
+ print!("{t}");
+ std::io::stdout().flush()?;
+ }
+ }
+ let dt = start_gen.elapsed();
+ if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
+ print!("{rest}");
+ }
+ std::io::stdout().flush()?;
+ println!(
+ "\n{generated_tokens} tokens generated ({:.2} token/s)",
+ generated_tokens as f64 / dt.as_secs_f64(),
+ );
+ Ok(())
+ }
+}
+
+#[derive(Parser, Debug)]
+#[command(author, version, about, long_about = None)]
+struct Args {
+ /// Run on CPU rather than on GPU.
+ #[arg(long)]
+ cpu: bool,
+
+ /// Enable tracing (generates a trace-timestamp.json file).
+ #[arg(long)]
+ tracing: bool,
+
+ #[arg(long)]
+ prompt: String,
+
+ /// The temperature used to generate samples.
+ #[arg(long)]
+ temperature: Option<f64>,
+
+ /// Nucleus sampling probability cutoff.
+ #[arg(long)]
+ top_p: Option<f64>,
+
+ /// The seed to use when generating random samples.
+ #[arg(long, default_value_t = 299792458)]
+ seed: u64,
+
+ /// The length of the sample to generate (in tokens).
+ #[arg(long, short = 'n', default_value_t = 10000)]
+ sample_len: usize,
+
+ #[arg(long)]
+ model_id: Option<String>,
+
+ #[arg(long, default_value = "main")]
+ revision: String,
+
+ #[arg(long)]
+ tokenizer_file: Option<String>,
+
+ #[arg(long)]
+ config_file: Option<String>,
+
+ #[arg(long)]
+ weight_files: Option<String>,
+
+ /// Penalty to be applied for repeating tokens, 1. means no penalty.
+ #[arg(long, default_value_t = 1.1)]
+ repeat_penalty: f32,
+
+ /// The context size to consider for the repeat penalty.
+ #[arg(long, default_value_t = 64)]
+ repeat_last_n: usize,
+}
+
+fn main() -> Result<()> {
+ use tracing_chrome::ChromeLayerBuilder;
+ use tracing_subscriber::prelude::*;
+
+ let args = Args::parse();
+ let _guard = if args.tracing {
+ let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
+ tracing_subscriber::registry().with(chrome_layer).init();
+ Some(guard)
+ } else {
+ None
+ };
+ println!(
+ "avx: {}, neon: {}, simd128: {}, f16c: {}",
+ candle::utils::with_avx(),
+ candle::utils::with_neon(),
+ candle::utils::with_simd128(),
+ candle::utils::with_f16c()
+ );
+ println!(
+ "temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
+ args.temperature.unwrap_or(0.),
+ args.repeat_penalty,
+ args.repeat_last_n
+ );
+
+ let start = std::time::Instant::now();
+ let api = Api::new()?;
+ let model_id = match &args.model_id {
+ Some(model_id) => match model_id.as_str() {
+ "7b" => "google/gemma-7b".to_string(),
+ "2b" => "google/gemma-2b".to_string(),
+ _ => model_id.to_string(),
+ },
+ None => "google/gemma-2b".to_string(),
+ };
+ let repo = api.repo(Repo::with_revision(
+ model_id,
+ RepoType::Model,
+ args.revision,
+ ));
+ let tokenizer_filename = match args.tokenizer_file {
+ Some(file) => std::path::PathBuf::from(file),
+ None => repo.get("tokenizer.json")?,
+ };
+ let config_filename = match args.config_file {
+ Some(file) => std::path::PathBuf::from(file),
+ None => repo.get("config.json")?,
+ };
+ let filenames = match args.weight_files {
+ Some(files) => files
+ .split(',')
+ .map(std::path::PathBuf::from)
+ .collect::<Vec<_>>(),
+ None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
+ };
+ println!("retrieved the files in {:?}", start.elapsed());
+ let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
+ let config: Config = serde_json::from_reader(std::fs::File::open(config_filename)?)?;
+
+ let start = std::time::Instant::now();
+ let device = candle_examples::device(args.cpu)?;
+ let dtype = if device.is_cuda() {
+ DType::BF16
+ } else {
+ DType::F32
+ };
+ let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
+ let model = Model::new(&config, vb)?;
+
+ println!("loaded the model in {:?}", start.elapsed());
+
+ let mut pipeline = TextGeneration::new(
+ model,
+ tokenizer,
+ args.seed,
+ args.temperature,
+ args.top_p,
+ args.repeat_penalty,
+ args.repeat_last_n,
+ &device,
+ );
+ pipeline.run(&args.prompt, args.sample_len)?;
+ Ok(())
+}
diff --git a/candle-transformers/src/models/gemma.rs b/candle-transformers/src/models/gemma.rs
new file mode 100644
index 00000000..e2be8406
--- /dev/null
+++ b/candle-transformers/src/models/gemma.rs
@@ -0,0 +1,380 @@
+use std::sync::Arc;
+
+use candle::{DType, Device, Module, Result, Tensor, D};
+use candle_nn::{linear_no_bias, Linear, VarBuilder};
+
+fn default_max_position_embeddings() -> usize {
+ 4096
+}
+
+#[derive(serde::Deserialize, Debug, Clone)]
+pub struct Config {
+ pub attention_bias: bool,
+ pub head_dim: usize,
+ pub hidden_act: candle_nn::Activation,
+ pub hidden_size: usize,
+ pub intermediate_size: usize,
+ pub num_attention_heads: usize,
+ pub num_hidden_layers: usize,
+ pub num_key_value_heads: usize,
+ pub rms_norm_eps: f64,
+ pub rope_theta: f64,
+ pub vocab_size: usize,
+
+ #[serde(default = "default_max_position_embeddings")]
+ pub max_position_embeddings: usize,
+}
+
+#[derive(Debug, Clone)]
+struct RmsNorm {
+ weight: Tensor,
+ eps: f64,
+}
+
+impl RmsNorm {
+ fn new(dim: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
+ let weight = vb.get(dim, "weight")?;
+ Ok(Self { weight, eps })
+ }
+}
+
+impl Module for RmsNorm {
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let x_dtype = x.dtype();
+ let internal_dtype = match x_dtype {
+ DType::F16 | DType::BF16 => DType::F32,
+ d => d,
+ };
+ let hidden_size = x.dim(D::Minus1)?;
+ let x = x.to_dtype(internal_dtype)?;
+ let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?;
+ let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
+ x_normed
+ .to_dtype(x_dtype)?
+ .broadcast_mul(&(&self.weight + 1.0)?)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct RotaryEmbedding {
+ sin: Tensor,
+ cos: Tensor,
+}
+
+fn rotate_half(xs: &Tensor) -> Result<Tensor> {
+ let last_dim = xs.dim(D::Minus1)?;
+ let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?;
+ let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?;
+ Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)
+}
+
+impl RotaryEmbedding {
+ fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
+ let dim = cfg.head_dim;
+ let max_seq_len = cfg.max_position_embeddings;
+ let inv_freq: Vec<_> = (0..dim)
+ .step_by(2)
+ .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
+ .collect();
+ let inv_freq_len = inv_freq.len();
+ let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
+ let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
+ .to_dtype(dtype)?
+ .reshape((max_seq_len, 1))?;
+ let freqs = t.matmul(&inv_freq)?;
+ let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
+ Ok(Self {
+ sin: freqs.sin()?,
+ cos: freqs.cos()?,
+ })
+ }
+
+ fn apply_rotary_emb_qkv(
+ &self,
+ q: &Tensor,
+ k: &Tensor,
+ seqlen_offset: usize,
+ ) -> Result<(Tensor, Tensor)> {
+ let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
+ let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
+ let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
+ let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
+ let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
+ let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?;
+ let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?;
+ Ok((q_embed, k_embed))
+ }
+}
+
+#[derive(Debug, Clone)]
+#[allow(clippy::upper_case_acronyms)]
+struct MLP {
+ gate_proj: Linear,
+ up_proj: Linear,
+ down_proj: Linear,
+ act_fn: candle_nn::Activation,
+}
+
+impl MLP {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let hidden_sz = cfg.hidden_size;
+ let intermediate_sz = cfg.intermediate_size;
+ let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?;
+ let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?;
+ let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?;
+ Ok(Self {
+ gate_proj,
+ up_proj,
+ down_proj,
+ act_fn: cfg.hidden_act,
+ })
+ }
+}
+
+impl Module for MLP {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
+ let rhs = xs.apply(&self.up_proj)?;
+ (lhs * rhs)?.apply(&self.down_proj)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct Attention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ o_proj: Linear,
+ num_heads: usize,
+ num_kv_heads: usize,
+ num_kv_groups: usize,
+ head_dim: usize,
+ rotary_emb: Arc<RotaryEmbedding>,
+ kv_cache: Option<(Tensor, Tensor)>,
+}
+
+impl Attention {
+ fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let hidden_sz = cfg.hidden_size;
+ let num_heads = cfg.num_attention_heads;
+ let num_kv_heads = cfg.num_key_value_heads;
+ let num_kv_groups = num_heads / num_kv_heads;
+ let head_dim = cfg.head_dim;
+ let q_proj = linear_no_bias(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?;
+ let k_proj = linear_no_bias(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?;
+ let v_proj = linear_no_bias(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?;
+ let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?;
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ o_proj,
+ num_heads,
+ num_kv_heads,
+ num_kv_groups,
+ head_dim,
+ rotary_emb,
+ kv_cache: None,
+ })
+ }
+
+ fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
+ let n_rep = self.num_kv_groups;
+ if n_rep == 1 {
+ Ok(xs)
+ } else {
+ let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
+ xs.unsqueeze(2)?
+ .expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
+ .reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
+ }
+ }
+
+ fn forward(
+ &mut self,
+ xs: &Tensor,
+ attention_mask: Option<&Tensor>,
+ seqlen_offset: usize,
+ ) -> Result<Tensor> {
+ let (b_sz, q_len, _) = xs.dims3()?;
+
+ let query_states = self.q_proj.forward(xs)?;
+ let key_states = self.k_proj.forward(xs)?;
+ let value_states = self.v_proj.forward(xs)?;
+
+ let query_states = query_states
+ .reshape((b_sz, q_len, self.num_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let key_states = key_states
+ .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let value_states = value_states
+ .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+
+ let (query_states, key_states) =
+ self.rotary_emb
+ .apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
+
+ let (key_states, value_states) = match &self.kv_cache {
+ None => (key_states, value_states),
+ Some((prev_k, prev_v)) => {
+ let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
+ let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
+ (key_states, value_states)
+ }
+ };
+ self.kv_cache = Some((key_states.clone(), value_states.clone()));
+
+ let key_states = self.repeat_kv(key_states)?.contiguous()?;
+ let value_states = self.repeat_kv(value_states)?.contiguous()?;
+
+ let attn_output = {
+ let scale = 1f64 / f64::sqrt(self.head_dim as f64);
+ let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
+
+ let attn_weights = match attention_mask {
+ None => attn_weights,
+ Some(mask) => attn_weights.broadcast_add(mask)?,
+ };
+ let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
+ attn_weights.matmul(&value_states)?
+ };
+ attn_output
+ .transpose(1, 2)?
+ .reshape((b_sz, q_len, ()))?
+ .apply(&self.o_proj)
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.kv_cache = None
+ }
+}
+
+#[derive(Debug, Clone)]
+struct DecoderLayer {
+ self_attn: Attention,
+ mlp: MLP,
+ input_layernorm: RmsNorm,
+ post_attention_layernorm: RmsNorm,
+}
+
+impl DecoderLayer {
+ fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
+ let mlp = MLP::new(cfg, vb.pp("mlp"))?;
+ let input_layernorm =
+ RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
+ let post_attention_layernorm = RmsNorm::new(
+ cfg.hidden_size,
+ cfg.rms_norm_eps,
+ vb.pp("post_attention_layernorm"),
+ )?;
+ Ok(Self {
+ self_attn,
+ mlp,
+ input_layernorm,
+ post_attention_layernorm,
+ })
+ }
+
+ fn forward(
+ &mut self,
+ xs: &Tensor,
+ attention_mask: Option<&Tensor>,
+ seqlen_offset: usize,
+ ) -> Result<Tensor> {
+ let residual = xs;
+ let xs = self.input_layernorm.forward(xs)?;
+ let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
+ let xs = (xs + residual)?;
+ let residual = &xs;
+ let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
+ residual + xs
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.self_attn.clear_kv_cache()
+ }
+}
+
+#[derive(Debug, Clone)]
+pub struct Model {
+ embed_tokens: candle_nn::Embedding,
+ layers: Vec<DecoderLayer>,
+ norm: RmsNorm,
+ lm_head: Linear,
+ device: Device,
+ dtype: DType,
+ hidden_size: usize,
+}
+
+impl Model {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let vb_m = vb.pp("model");
+ let embed_tokens =
+ candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
+ let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
+ let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
+ let vb_l = vb_m.pp("layers");
+ for layer_idx in 0..cfg.num_hidden_layers {
+ let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
+ layers.push(layer)
+ }
+ let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
+ let lm_head = Linear::new(embed_tokens.embeddings().clone(), None);
+ Ok(Self {
+ embed_tokens,
+ layers,
+ norm,
+ lm_head,
+ device: vb.device().clone(),
+ dtype: vb.dtype(),
+ hidden_size: cfg.hidden_size,
+ })
+ }
+
+ fn prepare_decoder_attention_mask(
+ &self,
+ b_size: usize,
+ tgt_len: usize,
+ seqlen_offset: usize,
+ ) -> Result<Tensor> {
+ let mask: Vec<_> = (0..tgt_len)
+ .flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
+ .collect();
+ let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
+ let mask = if seqlen_offset > 0 {
+ let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
+ Tensor::cat(&[&mask0, &mask], D::Minus1)?
+ } else {
+ mask
+ };
+ mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
+ .to_dtype(self.dtype)
+ }
+
+ pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
+ let (b_size, seq_len) = input_ids.dims2()?;
+ let attention_mask = if seq_len <= 1 {
+ None
+ } else {
+ let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
+ Some(mask)
+ };
+ let xs = self.embed_tokens.forward(input_ids)?;
+ let mut xs = (xs * (self.hidden_size as f64).sqrt())?;
+ for layer in self.layers.iter_mut() {
+ xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
+ }
+ xs.narrow(1, seq_len - 1, 1)?
+ .apply(&self.norm)?
+ .apply(&self.lm_head)
+ }
+
+ pub fn clear_kv_cache(&mut self) {
+ for layer in self.layers.iter_mut() {
+ layer.clear_kv_cache()
+ }
+ }
+}
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index 8eab4744..bb59a53f 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -9,6 +9,7 @@ pub mod dinov2;
pub mod distilbert;
pub mod efficientnet;
pub mod falcon;
+pub mod gemma;
pub mod jina_bert;
pub mod llama;
pub mod llama2_c;