summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--candle-core/src/metal_backend.rs23
-rw-r--r--candle-metal-kernels/src/lib.rs6
-rw-r--r--candle-metal-kernels/src/tests.rs21
-rw-r--r--candle-nn/src/ops.rs3
4 files changed, 33 insertions, 20 deletions
diff --git a/candle-core/src/metal_backend.rs b/candle-core/src/metal_backend.rs
index f570d2c5..424b29d9 100644
--- a/candle-core/src/metal_backend.rs
+++ b/candle-core/src/metal_backend.rs
@@ -482,11 +482,14 @@ impl BackendStorage for MetalStorage {
}
fn reduce_op(&self, op: ReduceOp, layout: &Layout, sum_dims: &[usize]) -> Result<Self> {
- if !(sum_dims.len() == 1
- && sum_dims[0] == layout.shape().rank() - 1
- && layout.stride()[sum_dims[0]] == 1)
- {
- crate::bail!("Non last dim reduce op not supported yet");
+ if sum_dims.len() != 1 {
+ crate::bail!("reduce {op:?} over multiple dimensions is not implemented yet.");
+ }
+ if sum_dims[0] != layout.shape().rank() - 1 {
+ crate::bail!("Non last dim reduce op {op:?} not implemented yet");
+ }
+ if layout.stride()[sum_dims[0]] != 1 {
+ crate::bail!("Non contiguous reduce op {op:?} not implemented yet");
}
let device = self.device.clone();
@@ -524,7 +527,7 @@ impl BackendStorage for MetalStorage {
}
let dtype = if return_index { DType::U32 } else { self.dtype };
if dtype == DType::U32 {
- crate::bail!("Implement return index reduce op");
+ crate::bail!("reduce op {name} is not implemented yet.");
}
let buffer = device.new_buffer(dst_el, dtype, "reduce")?;
let command_buffer = self.device.command_buffer()?;
@@ -790,12 +793,16 @@ impl BackendStorage for MetalStorage {
let buffer = self.device.new_buffer(el, dtype, "where")?;
let command_buffer = self.device.command_buffer()?;
if t.dtype() != f.dtype() {
- crate::bail!("Invalid ternary different dtypes for values");
+ crate::bail!(
+ "Invalid where: different dtypes for values {:?} != {:?}",
+ t.dtype(),
+ f.dtype()
+ );
}
let name = match (self.dtype, t.dtype()) {
(DType::U8, DType::F32) => "where_u8_f32",
(DType::U8, DType::F16) => "where_u8_f16",
- (left, right) => crate::bail!("Ternary {left:?} - {right:?} not implemented"),
+ (left, right) => crate::bail!("where {left:?} - {right:?} not implemented"),
};
candle_metal_kernels::call_where_cond_strided(
&device.device,
diff --git a/candle-metal-kernels/src/lib.rs b/candle-metal-kernels/src/lib.rs
index a23aa47c..f2db171e 100644
--- a/candle-metal-kernels/src/lib.rs
+++ b/candle-metal-kernels/src/lib.rs
@@ -597,6 +597,7 @@ pub fn call_last_softmax(
length: usize,
elements_to_sum: usize,
input: &Buffer,
+ input_offset: usize,
output: &Buffer,
) -> Result<(), MetalKernelError> {
let pipeline = kernels.load_pipeline(device, Source::Reduce, kernel_name)?;
@@ -604,7 +605,10 @@ pub fn call_last_softmax(
encoder.wait_for_fence(&kernels.fence);
encoder.set_compute_pipeline_state(&pipeline);
- set_params!(encoder, (length, elements_to_sum, input, output));
+ set_params!(
+ encoder,
+ (length, elements_to_sum, (input, input_offset), output)
+ );
let out_length = length / elements_to_sum;
diff --git a/candle-metal-kernels/src/tests.rs b/candle-metal-kernels/src/tests.rs
index 75c2f013..9c9475a2 100644
--- a/candle-metal-kernels/src/tests.rs
+++ b/candle-metal-kernels/src/tests.rs
@@ -312,7 +312,7 @@ fn run_affine<T: Clone>(v: &[T], mul: f64, add: f64) -> Vec<T> {
&device,
command_buffer,
&kernels,
- "affine_float",
+ "affine_f32",
size,
&input,
&output,
@@ -346,7 +346,7 @@ fn run_affine_strided<T: Clone>(
&device,
command_buffer,
&kernels,
- "affine_float_strided",
+ "affine_f32_strided",
shape,
&input,
strides,
@@ -608,6 +608,7 @@ fn run_softmax<T: Clone + std::fmt::Debug>(v: &[T], last_dim: usize, name: &'sta
v.len(),
last_dim,
&input,
+ 0,
&output,
)
.unwrap();
@@ -622,7 +623,7 @@ fn reduce_sum() {
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
let out_length = 1;
- let results = run_reduce(&v, out_length, "fast_sum_float");
+ let results = run_reduce(&v, out_length, "fast_sum_f32");
assert_eq!(approx(results, 4), vec![21.0]);
}
@@ -631,7 +632,7 @@ fn reduce_sum2() {
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
let out_length = 2;
- let results = run_reduce(&v, out_length, "fast_sum_float");
+ let results = run_reduce(&v, out_length, "fast_sum_f32");
assert_eq!(approx(results, 4), vec![6.0, 15.0]);
}
@@ -639,7 +640,7 @@ fn reduce_sum2() {
fn softmax() {
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
let last_dim = 6;
- let results = run_softmax(&v, last_dim, "softmax_float");
+ let results = run_softmax(&v, last_dim, "softmax_f32");
assert_eq!(
approx(results, 4),
vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337]
@@ -651,7 +652,7 @@ fn softmax() {
for i in 0..n {
v[i * last_dim] = 20.0;
}
- let results = run_softmax(&v, last_dim, "softmax_float");
+ let results = run_softmax(&v, last_dim, "softmax_f32");
let results = approx(results, 4);
println!("{results:?}");
assert_eq!(
@@ -665,7 +666,7 @@ fn softmax() {
let v = vec![0.0f32, 1.0, 2.0, 3.0, 4.0, 5.0];
let last_dim = 6;
- let results = run_softmax(&v, last_dim, "softmax_float");
+ let results = run_softmax(&v, last_dim, "softmax_f32");
assert_eq!(
approx(results, 4),
vec![0.0043, 0.0116, 0.0315, 0.0858, 0.2331, 0.6337]
@@ -673,7 +674,7 @@ fn softmax() {
let v = vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0];
let last_dim = 3;
- let results = run_softmax(&v, last_dim, "softmax_float");
+ let results = run_softmax(&v, last_dim, "softmax_f32");
assert_eq!(
approx(results, 4),
vec![0.0900, 0.2447, 0.6652, 0.0900, 0.2447, 0.6652]
@@ -684,7 +685,7 @@ fn softmax() {
.map(|v| f16::from_f32(*v))
.collect::<Vec<_>>();
let last_dim = 6;
- let results = run_softmax(&v, last_dim, "softmax_half");
+ let results = run_softmax(&v, last_dim, "softmax_f16");
assert_eq!(
approx_f16(results, 4),
vec![0.0043, 0.0116, 0.0316, 0.0858, 0.2332, 0.6338]
@@ -695,7 +696,7 @@ fn softmax() {
.map(|v| bf16::from_f32(*v))
.collect::<Vec<_>>();
let last_dim = 6;
- let results = run_softmax(&v, last_dim, "softmax_bfloat");
+ let results = run_softmax(&v, last_dim, "softmax_bf16");
assert_eq!(
approx_bf16(results, 4),
vec![0.0043, 0.0116, 0.0315, 0.0859, 0.2324, 0.6328]
diff --git a/candle-nn/src/ops.rs b/candle-nn/src/ops.rs
index 94380f12..816eff42 100644
--- a/candle-nn/src/ops.rs
+++ b/candle-nn/src/ops.rs
@@ -220,7 +220,7 @@ impl candle::CustomOp1 for SoftmaxLastDim {
};
let n = layout.stride().len();
- if !(layout.is_contiguous() && layout.stride()[n - 1] == 1 && layout.start_offset() == 0) {
+ if !(layout.is_contiguous() && layout.stride()[n - 1] == 1) {
candle::bail!("Non contiguous softmax-last-dim is not implemented");
}
@@ -235,6 +235,7 @@ impl candle::CustomOp1 for SoftmaxLastDim {
elem_count,
last_dim,
storage.buffer(),
+ layout.start_offset() * storage.dtype().size_in_bytes(),
&mut output,
)
.unwrap();