summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--candle-examples/examples/replit-code/main.rs234
-rw-r--r--candle-transformers/src/models/mpt.rs100
2 files changed, 328 insertions, 6 deletions
diff --git a/candle-examples/examples/replit-code/main.rs b/candle-examples/examples/replit-code/main.rs
new file mode 100644
index 00000000..862f9993
--- /dev/null
+++ b/candle-examples/examples/replit-code/main.rs
@@ -0,0 +1,234 @@
+#[cfg(feature = "mkl")]
+extern crate intel_mkl_src;
+
+#[cfg(feature = "accelerate")]
+extern crate accelerate_src;
+
+use anyhow::{Error as E, Result};
+use clap::Parser;
+
+use candle_transformers::models::mpt::{Config, Model};
+
+use candle::{DType, Device, Tensor};
+use candle_nn::VarBuilder;
+use candle_transformers::generation::LogitsProcessor;
+use hf_hub::{api::sync::Api, Repo, RepoType};
+use tokenizers::Tokenizer;
+
+struct TextGeneration {
+ model: Model,
+ device: Device,
+ tokenizer: Tokenizer,
+ logits_processor: LogitsProcessor,
+ repeat_penalty: f32,
+ repeat_last_n: usize,
+ verbose_prompt: bool,
+}
+
+impl TextGeneration {
+ #[allow(clippy::too_many_arguments)]
+ fn new(
+ model: Model,
+ tokenizer: Tokenizer,
+ seed: u64,
+ temp: Option<f64>,
+ top_p: Option<f64>,
+ repeat_penalty: f32,
+ repeat_last_n: usize,
+ verbose_prompt: bool,
+ device: &Device,
+ ) -> Self {
+ let logits_processor = LogitsProcessor::new(seed, temp, top_p);
+ Self {
+ model,
+ tokenizer,
+ logits_processor,
+ repeat_penalty,
+ repeat_last_n,
+ verbose_prompt,
+ device: device.clone(),
+ }
+ }
+
+ fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
+ use std::io::Write;
+ println!("starting the inference loop");
+ let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
+ if tokens.is_empty() {
+ anyhow::bail!("Empty prompts are not supported in the phi model.")
+ }
+ if self.verbose_prompt {
+ for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
+ let token = token.replace('▁', " ").replace("<0x0A>", "\n");
+ println!("{id:7} -> '{token}'");
+ }
+ }
+ let mut tokens = tokens.get_ids().to_vec();
+ let mut generated_tokens = 0usize;
+ let eos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
+ Some(token) => *token,
+ None => anyhow::bail!("cannot find the endoftext token"),
+ };
+ print!("{prompt}");
+ std::io::stdout().flush()?;
+ let start_gen = std::time::Instant::now();
+ for index in 0..sample_len {
+ let context_size = if index > 0 { 1 } else { tokens.len() };
+ let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
+ let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
+ let logits = self.model.forward(&input)?;
+ let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
+ let logits = if self.repeat_penalty == 1. {
+ logits
+ } else {
+ let start_at = tokens.len().saturating_sub(self.repeat_last_n);
+ candle_transformers::utils::apply_repeat_penalty(
+ &logits,
+ self.repeat_penalty,
+ &tokens[start_at..],
+ )?
+ };
+
+ let next_token = self.logits_processor.sample(&logits)?;
+ tokens.push(next_token);
+ generated_tokens += 1;
+ if next_token == eos_token {
+ break;
+ }
+ let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
+ print!("{token}");
+ std::io::stdout().flush()?;
+ }
+ let dt = start_gen.elapsed();
+ println!(
+ "\n{generated_tokens} tokens generated ({:.2} token/s)",
+ generated_tokens as f64 / dt.as_secs_f64(),
+ );
+ Ok(())
+ }
+}
+
+#[derive(Parser, Debug)]
+#[command(author, version, about, long_about = None)]
+struct Args {
+ /// Run on CPU rather than on GPU.
+ #[arg(long)]
+ cpu: bool,
+
+ /// Enable tracing (generates a trace-timestamp.json file).
+ #[arg(long)]
+ tracing: bool,
+
+ /// Display the token for the specified prompt.
+ #[arg(long)]
+ verbose_prompt: bool,
+
+ #[arg(long)]
+ prompt: String,
+
+ /// The temperature used to generate samples.
+ #[arg(long)]
+ temperature: Option<f64>,
+
+ /// Nucleus sampling probability cutoff.
+ #[arg(long)]
+ top_p: Option<f64>,
+
+ /// The seed to use when generating random samples.
+ #[arg(long, default_value_t = 299792458)]
+ seed: u64,
+
+ /// The length of the sample to generate (in tokens).
+ #[arg(long, short = 'n', default_value_t = 100)]
+ sample_len: usize,
+
+ #[arg(long)]
+ model_id: Option<String>,
+
+ #[arg(long)]
+ revision: Option<String>,
+
+ #[arg(long)]
+ weight_file: Option<String>,
+
+ #[arg(long)]
+ tokenizer: Option<String>,
+
+ /// Penalty to be applied for repeating tokens, 1. means no penalty.
+ #[arg(long, default_value_t = 1.1)]
+ repeat_penalty: f32,
+
+ /// The context size to consider for the repeat penalty.
+ #[arg(long, default_value_t = 64)]
+ repeat_last_n: usize,
+}
+
+fn main() -> Result<()> {
+ use tracing_chrome::ChromeLayerBuilder;
+ use tracing_subscriber::prelude::*;
+
+ let args = Args::parse();
+ let _guard = if args.tracing {
+ let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
+ tracing_subscriber::registry().with(chrome_layer).init();
+ Some(guard)
+ } else {
+ None
+ };
+ println!(
+ "avx: {}, neon: {}, simd128: {}, f16c: {}",
+ candle::utils::with_avx(),
+ candle::utils::with_neon(),
+ candle::utils::with_simd128(),
+ candle::utils::with_f16c()
+ );
+ println!(
+ "temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
+ args.temperature.unwrap_or(0.),
+ args.repeat_penalty,
+ args.repeat_last_n
+ );
+
+ let start = std::time::Instant::now();
+ let api = Api::new()?;
+ let model_id = match args.model_id {
+ Some(model_id) => model_id.to_string(),
+ None => "lmz/candle-replit-code".to_string(),
+ };
+ let revision = match args.revision {
+ Some(rev) => rev.to_string(),
+ None => "main".to_string(),
+ };
+ let repo = api.repo(Repo::with_revision(model_id, RepoType::Model, revision));
+ let tokenizer_filename = match args.tokenizer {
+ Some(file) => std::path::PathBuf::from(file),
+ None => repo.get("tokenizer.json")?,
+ };
+ let filename = match args.weight_file {
+ Some(weight_file) => std::path::PathBuf::from(weight_file),
+ None => repo.get("model.safetensors")?,
+ };
+ println!("retrieved the files in {:?}", start.elapsed());
+ let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
+
+ let start = std::time::Instant::now();
+ let config = Config::replit_code_v1_5_3b();
+ let device = candle_examples::device(args.cpu)?;
+ let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[filename], DType::F32, &device)? };
+ let model = Model::new(&config, vb)?;
+ println!("loaded the model in {:?}", start.elapsed());
+
+ let mut pipeline = TextGeneration::new(
+ model,
+ tokenizer,
+ args.seed,
+ args.temperature,
+ args.top_p,
+ args.repeat_penalty,
+ args.repeat_last_n,
+ args.verbose_prompt,
+ &device,
+ );
+ pipeline.run(&args.prompt, args.sample_len)?;
+ Ok(())
+}
diff --git a/candle-transformers/src/models/mpt.rs b/candle-transformers/src/models/mpt.rs
index e11a9a75..b26caa81 100644
--- a/candle-transformers/src/models/mpt.rs
+++ b/candle-transformers/src/models/mpt.rs
@@ -15,7 +15,9 @@ pub struct Config {
pub(crate) max_seq_len: usize,
pub(crate) vocab_size: usize,
pub(crate) kv_n_heads: usize,
- // pub(crate) attn_config: AttnConfig,
+ pub(crate) attn_prefix_lm: bool,
+ pub(crate) attn_alibi: bool,
+ pub(crate) attn_alibi_bias_max: usize,
}
impl Config {
@@ -28,8 +30,15 @@ impl Config {
max_seq_len: 4096,
vocab_size: 32768,
kv_n_heads: 8,
+ attn_prefix_lm: false,
+ attn_alibi: true,
+ attn_alibi_bias_max: 8,
}
}
+
+ pub fn is_causal(&self) -> bool {
+ !self.attn_prefix_lm
+ }
}
#[derive(Debug)]
@@ -42,6 +51,7 @@ struct GroupedQueryAttention {
d_model: usize,
n_heads: usize,
kv_n_heads: usize,
+ attn_bias: Tensor,
span: tracing::Span,
}
@@ -52,6 +62,7 @@ impl GroupedQueryAttention {
let head_dim = cfg.d_model / cfg.n_heads;
let softmax_scale = 1f64 / (head_dim as f64).sqrt();
let out_proj = linear(cfg.d_model, cfg.d_model, vb.pp("out_proj"))?;
+ let attn_bias = build_alibi_bias(cfg)?.to_device(vb.device())?;
Ok(Self {
wqkv,
out_proj,
@@ -61,6 +72,7 @@ impl GroupedQueryAttention {
d_model: cfg.d_model,
n_heads: cfg.n_heads,
kv_n_heads: cfg.kv_n_heads,
+ attn_bias,
span: tracing::span!(tracing::Level::TRACE, "gqa"),
})
}
@@ -94,7 +106,23 @@ impl GroupedQueryAttention {
let key = repeat_kv(key, self.n_heads / self.kv_n_heads)?;
let value = repeat_kv(value, self.n_heads / self.kv_n_heads)?;
let attn_weights = (query.matmul(&key)? * self.softmax_scale)?;
- // TODO: attn_bias, alibi
+ let attn_bias = {
+ let s_q = query.dim(D::Minus2)?;
+ let s_k = key.dim(D::Minus1)?;
+ let (_, _, a_q, a_k) = self.attn_bias.dims4()?;
+ self.attn_bias
+ .narrow(2, a_q - s_q, s_q)?
+ .narrow(3, a_k - s_k, s_k)?
+ };
+ let attn_weights = (attn_weights + attn_bias)?;
+ let attn_weights = match mask {
+ None => attn_weights,
+ Some(mask) => masked_fill(
+ &attn_weights,
+ &mask.broadcast_left(b_size * self.n_heads)?,
+ f32::NEG_INFINITY,
+ )?,
+ };
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
let attn_output = attn_weights
.matmul(&value)?
@@ -172,15 +200,49 @@ impl MPTBlock {
}
}
+fn build_alibi_bias(cfg: &Config) -> Result<Tensor> {
+ let full = !cfg.is_causal();
+ let seq_len = cfg.max_seq_len;
+ let alibi_bias = Tensor::arange(1 - seq_len as i64, 1, &Device::Cpu)?;
+ let alibi_bias = if full {
+ let a1 = alibi_bias.reshape((1, 1, 1, seq_len))?;
+ let a2 = alibi_bias.reshape((1, 1, seq_len, 1))?;
+ a1.broadcast_sub(&a2)?.abs()?.neg()?
+ } else {
+ alibi_bias.reshape((1, 1, 1, seq_len))?
+ };
+ let mut n_heads2 = 1;
+ while 2 * n_heads2 <= cfg.n_heads {
+ n_heads2 *= 2
+ }
+ let slopes = (1..=n_heads2)
+ .map(|v| 1f32 / 2f32.powf((v * cfg.attn_alibi_bias_max) as f32 / n_heads2 as f32))
+ .collect::<Vec<_>>();
+ let slopes = if n_heads2 == cfg.n_heads {
+ slopes
+ } else {
+ slopes
+ .iter()
+ .skip(1)
+ .step_by(2)
+ .chain(slopes.iter().step_by(2))
+ .take(cfg.n_heads)
+ .cloned()
+ .collect::<Vec<f32>>()
+ };
+ let slopes = Tensor::new(slopes, &Device::Cpu)?;
+ alibi_bias.broadcast_mul(&slopes)
+}
+
#[derive(Debug)]
-struct Model {
+pub struct Model {
wte: candle_nn::Embedding,
blocks: Vec<MPTBlock>,
norm_f: LayerNorm,
}
impl Model {
- fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let wte = candle_nn::embedding(cfg.vocab_size, cfg.d_model, vb.pp("wte"))?;
let vb_b = vb.pp("blocks");
let mut blocks = Vec::with_capacity(cfg.n_layers);
@@ -196,7 +258,33 @@ impl Model {
})
}
- fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
- todo!()
+ pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
+ let (_b_size, seq_len) = xs.dims2()?;
+ let mut xs = xs.apply(&self.wte)?;
+ let mask = if seq_len <= 1 {
+ None
+ } else {
+ Some(get_mask(seq_len, xs.device())?)
+ };
+ for block in self.blocks.iter_mut() {
+ xs = block.forward(&xs, mask.as_ref())?
+ }
+ xs.narrow(1, seq_len - 1, 1)?
+ .matmul(&self.wte.embeddings().t()?)?
+ .squeeze(1)
}
}
+
+fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
+ let mask: Vec<_> = (0..size)
+ .flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
+ .collect();
+ Tensor::from_slice(&mask, (size, size), device)
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
+ let shape = mask.shape();
+ let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
+ let m = mask.where_cond(&on_true, on_false)?;
+ Ok(m)
+}