summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--candle-core/src/cpu_backend.rs2
-rw-r--r--candle-core/src/cuda_backend.rs65
-rw-r--r--candle-core/tests/tensor_tests.rs276
-rw-r--r--candle-examples/examples/simple-training/main.rs13
-rw-r--r--candle-kernels/src/cuda_utils.cuh3
-rw-r--r--candle-kernels/src/reduce.cu122
6 files changed, 453 insertions, 28 deletions
diff --git a/candle-core/src/cpu_backend.rs b/candle-core/src/cpu_backend.rs
index c39cb9f7..59c17387 100644
--- a/candle-core/src/cpu_backend.rs
+++ b/candle-core/src/cpu_backend.rs
@@ -244,7 +244,7 @@ impl ReduceIndex {
val = s
}
}
- dst[unstr_index] = g(val, acc)
+ dst_to_set[unstr_index] = g(val, acc)
}
}
}
diff --git a/candle-core/src/cuda_backend.rs b/candle-core/src/cuda_backend.rs
index a88d62c7..6c98cd0a 100644
--- a/candle-core/src/cuda_backend.rs
+++ b/candle-core/src/cuda_backend.rs
@@ -438,6 +438,28 @@ trait Map2InPlace {
}
}
+trait Map1Any {
+ fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
+ &self,
+ src: &CudaSlice<T>,
+ dev: &CudaDevice,
+ layout: &Layout,
+ wrap: W,
+ ) -> Result<S>;
+
+ fn map(&self, s: &S, d: &CudaDevice, l: &Layout) -> Result<S> {
+ let out = match s {
+ S::U8(s) => self.f(s, d, l, S::U8)?,
+ S::U32(s) => self.f(s, d, l, S::U32)?,
+ S::BF16(s) => self.f(s, d, l, S::BF16)?,
+ S::F16(s) => self.f(s, d, l, S::F16)?,
+ S::F32(s) => self.f(s, d, l, S::F32)?,
+ S::F64(s) => self.f(s, d, l, S::F64)?,
+ };
+ Ok(out)
+ }
+}
+
trait Map2Any {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
&self,
@@ -574,13 +596,14 @@ impl<'a> Map1 for Sum<'a> {
}
struct FastReduce<'a>(&'a [usize], ReduceOp);
-impl<'a> Map1 for FastReduce<'a> {
- fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
+impl<'a> Map1Any for FastReduce<'a> {
+ fn f<T: DeviceRepr + WithDType + ValidAsZeroBits, W: Fn(CudaSlice<T>) -> S>(
&self,
src: &CudaSlice<T>,
dev: &CudaDevice,
layout: &Layout,
- ) -> Result<CudaSlice<T>> {
+ wrap: W,
+ ) -> Result<S> {
let src_stride = layout.stride();
let src_dims = layout.shape().dims();
let src_el: usize = src_dims.iter().product();
@@ -615,20 +638,32 @@ impl<'a> Map1 for FastReduce<'a> {
.htod_copy([dims.as_slice(), stride.as_slice()].concat())
.w()?;
let src = &src.slice(layout.start_offset()..);
- let name = match self.1 {
- ReduceOp::Sum => "fast_sum",
- ReduceOp::Min => "fast_min",
- ReduceOp::Max => "fast_max",
- ReduceOp::ArgMin => "fast_argmin",
- ReduceOp::ArgMax => "fast_argmax",
+ let (name, check_empty, return_index) = match self.1 {
+ ReduceOp::Sum => ("fast_sum", false, false),
+ ReduceOp::Min => ("fast_min", true, false),
+ ReduceOp::Max => ("fast_max", true, false),
+ ReduceOp::ArgMin => ("fast_argmin", true, true),
+ ReduceOp::ArgMax => ("fast_argmax", true, true),
};
+ if check_empty && layout.shape().elem_count() == 0 {
+ Err(crate::Error::EmptyTensor { op: "reduce" }.bt())?
+ }
let func = dev.get_or_load_func(&kernel_name::<T>(name), kernels::REDUCE)?;
- // SAFETY: filled in by the follow up kernel.
- let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
- let params = (src_el, el_to_sum_per_block, src_dims.len(), &ds, src, &out);
- // SAFETY: ffi.
- unsafe { func.launch(cfg, params) }.w()?;
- Ok(out)
+ if return_index {
+ // SAFETY: filled in by the follow up kernel.
+ let out = unsafe { dev.alloc::<u32>(dst_el) }.w()?;
+ let params = (src_el, el_to_sum_per_block, src_dims.len(), &ds, src, &out);
+ // SAFETY: ffi.
+ unsafe { func.launch(cfg, params) }.w()?;
+ Ok(S::U32(out))
+ } else {
+ // SAFETY: filled in by the follow up kernel.
+ let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
+ let params = (src_el, el_to_sum_per_block, src_dims.len(), &ds, src, &out);
+ // SAFETY: ffi.
+ unsafe { func.launch(cfg, params) }.w()?;
+ Ok(wrap(out))
+ }
}
}
diff --git a/candle-core/tests/tensor_tests.rs b/candle-core/tests/tensor_tests.rs
index a439ba30..38336ecf 100644
--- a/candle-core/tests/tensor_tests.rs
+++ b/candle-core/tests/tensor_tests.rs
@@ -164,6 +164,278 @@ fn sum(device: &Device) -> Result<()> {
Ok(())
}
+fn min(device: &Device) -> Result<()> {
+ let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]];
+ let tensor = Tensor::new(data, device)?;
+ assert_eq!(
+ tensor.min_keepdim(2)?.to_vec3::<u32>()?,
+ &[[[1], [1]], [[1], [2]]]
+ );
+ assert_eq!(
+ tensor.min_keepdim(0)?.to_vec3::<u32>()?,
+ &[[[2, 1, 4], [1, 2, 8]]],
+ );
+ let data: Vec<u32> = (200..4000u32).collect();
+ let tensor = Tensor::new(data.as_slice(), device)?;
+ assert_eq!(tensor.min_keepdim(0)?.to_vec1::<u32>()?, &[200]);
+ let tensor = tensor.reshape((1900, 2))?;
+ assert_eq!(
+ tensor.min_keepdim(0)?.min_keepdim(1)?.to_vec2::<u32>()?,
+ &[[200]]
+ );
+ assert_eq!(
+ tensor.min_keepdim(1)?.min_keepdim(0)?.to_vec2::<u32>()?,
+ &[[200]]
+ );
+ assert_eq!(tensor.min_keepdim(0)?.to_vec2::<u32>()?, &[[200, 201]]);
+
+ // Make the tensor non contiguous.
+ let tensor = tensor.t()?.contiguous()?.t()?;
+ assert_eq!(
+ tensor.min_keepdim(0)?.min_keepdim(1)?.to_vec2::<u32>()?,
+ &[[200]]
+ );
+ assert_eq!(
+ tensor.min_keepdim(1)?.min_keepdim(0)?.to_vec2::<u32>()?,
+ &[[200]]
+ );
+ assert_eq!(tensor.min_keepdim(0)?.to_vec2::<u32>()?, &[[200, 201]]);
+
+ let t1 = tensor.reshape((190, 5, 4))?;
+ let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?;
+ for tensor in [t1, t2] {
+ assert_eq!(
+ tensor
+ .min_keepdim(0)?
+ .min_keepdim(2)?
+ .min_keepdim(1)?
+ .to_vec3::<u32>()?,
+ &[[[200]]]
+ );
+ assert_eq!(
+ tensor.min_keepdim(0)?.to_vec3::<u32>()?,
+ &[[
+ [200, 201, 202, 203],
+ [204, 205, 206, 207],
+ [208, 209, 210, 211],
+ [212, 213, 214, 215],
+ [216, 217, 218, 219]
+ ]]
+ );
+ }
+ Ok(())
+}
+
+fn max(device: &Device) -> Result<()> {
+ let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]];
+ let tensor = Tensor::new(data, device)?;
+ assert_eq!(
+ tensor.max_keepdim(2)?.to_vec3::<u32>()?,
+ &[[[4], [9]], [[7], [8]]]
+ );
+ assert_eq!(
+ tensor.max_keepdim(0)?.to_vec3::<u32>()?,
+ &[[[3, 1, 7], [8, 5, 9]]],
+ );
+ let data: Vec<u32> = (200..4000u32).collect();
+ let tensor = Tensor::new(data.as_slice(), device)?;
+ assert_eq!(tensor.max_keepdim(0)?.to_vec1::<u32>()?, &[3999]);
+ let tensor = tensor.reshape((1900, 2))?;
+ assert_eq!(
+ tensor.max_keepdim(0)?.max_keepdim(1)?.to_vec2::<u32>()?,
+ &[[3999]]
+ );
+ assert_eq!(
+ tensor.max_keepdim(1)?.max_keepdim(0)?.to_vec2::<u32>()?,
+ &[[3999]]
+ );
+ assert_eq!(tensor.max_keepdim(0)?.to_vec2::<u32>()?, &[[3998, 3999]]);
+
+ // Make the tensor non contiguous.
+ let tensor = tensor.t()?.contiguous()?.t()?;
+ assert_eq!(
+ tensor.max_keepdim(0)?.max_keepdim(1)?.to_vec2::<u32>()?,
+ &[[3999]]
+ );
+ assert_eq!(
+ tensor.max_keepdim(1)?.max_keepdim(0)?.to_vec2::<u32>()?,
+ &[[3999]]
+ );
+ assert_eq!(tensor.max_keepdim(0)?.to_vec2::<u32>()?, &[[3998, 3999]]);
+
+ let t1 = tensor.reshape((190, 5, 4))?;
+ let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?;
+ for tensor in [t1, t2] {
+ assert_eq!(
+ tensor
+ .max_keepdim(0)?
+ .max_keepdim(2)?
+ .max_keepdim(1)?
+ .to_vec3::<u32>()?,
+ &[[[3999]]]
+ );
+ assert_eq!(
+ tensor.max_keepdim(0)?.to_vec3::<u32>()?,
+ &[[
+ [3980, 3981, 3982, 3983],
+ [3984, 3985, 3986, 3987],
+ [3988, 3989, 3990, 3991],
+ [3992, 3993, 3994, 3995],
+ [3996, 3997, 3998, 3999]
+ ]]
+ );
+ }
+ Ok(())
+}
+
+fn argmin(device: &Device) -> Result<()> {
+ let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]];
+ let tensor = Tensor::new(data, device)?;
+ assert_eq!(
+ tensor.argmin_keepdim(2)?.to_vec3::<u32>()?,
+ &[[[1], [0]], [[1], [1]]]
+ );
+ assert_eq!(
+ tensor.argmin_keepdim(0)?.to_vec3::<u32>()?,
+ &[[[1, 0, 0], [0, 1, 1]]],
+ );
+ let data: Vec<u32> = (200..4000u32).collect();
+ let tensor = Tensor::new(data.as_slice(), device)?;
+ assert_eq!(tensor.argmin_keepdim(0)?.to_vec1::<u32>()?, &[0]);
+ let tensor = tensor.reshape((1900, 2))?;
+ assert_eq!(
+ tensor
+ .argmin_keepdim(0)?
+ .argmin_keepdim(1)?
+ .to_vec2::<u32>()?,
+ &[[0]]
+ );
+ assert_eq!(
+ tensor
+ .argmin_keepdim(1)?
+ .argmin_keepdim(0)?
+ .to_vec2::<u32>()?,
+ &[[0]]
+ );
+ assert_eq!(tensor.argmin_keepdim(0)?.to_vec2::<u32>()?, &[[0, 0]]);
+
+ // Make the tensor non contiguous.
+ let tensor = tensor.t()?.contiguous()?.t()?;
+ assert_eq!(
+ tensor
+ .argmin_keepdim(0)?
+ .argmin_keepdim(1)?
+ .to_vec2::<u32>()?,
+ &[[0]]
+ );
+ assert_eq!(
+ tensor
+ .argmin_keepdim(1)?
+ .argmin_keepdim(0)?
+ .to_vec2::<u32>()?,
+ &[[0]]
+ );
+ assert_eq!(tensor.argmin_keepdim(0)?.to_vec2::<u32>()?, &[[0, 0]]);
+
+ let t1 = tensor.reshape((190, 5, 4))?;
+ let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?;
+ for tensor in [t1, t2] {
+ assert_eq!(
+ tensor
+ .argmin_keepdim(0)?
+ .argmin_keepdim(2)?
+ .argmin_keepdim(1)?
+ .to_vec3::<u32>()?,
+ &[[[0]]]
+ );
+ assert_eq!(
+ tensor.argmin_keepdim(0)?.to_vec3::<u32>()?,
+ &[[
+ [0, 0, 0, 0],
+ [0, 0, 0, 0],
+ [0, 0, 0, 0],
+ [0, 0, 0, 0],
+ [0, 0, 0, 0],
+ ]]
+ );
+ }
+ Ok(())
+}
+
+fn argmax(device: &Device) -> Result<()> {
+ let data = &[[[3u32, 1, 4], [1, 5, 9]], [[2, 1, 7], [8, 2, 8]]];
+ let tensor = Tensor::new(data, device)?;
+ assert_eq!(
+ tensor.argmax_keepdim(2)?.to_vec3::<u32>()?,
+ &[[[2], [2]], [[2], [0]]]
+ );
+ assert_eq!(
+ tensor.argmax_keepdim(0)?.to_vec3::<u32>()?,
+ &[[[0, 0, 1], [1, 0, 0]]],
+ );
+ let data: Vec<u32> = (200..4000u32).collect();
+ let tensor = Tensor::new(data.as_slice(), device)?;
+ assert_eq!(tensor.argmax_keepdim(0)?.to_vec1::<u32>()?, &[3799]);
+ let tensor = tensor.reshape((1900, 2))?;
+ assert_eq!(
+ tensor
+ .argmax_keepdim(0)?
+ .argmax_keepdim(1)?
+ .to_vec2::<u32>()?,
+ &[[0]]
+ );
+ assert_eq!(
+ tensor
+ .argmax_keepdim(1)?
+ .argmax_keepdim(0)?
+ .to_vec2::<u32>()?,
+ &[[0]]
+ );
+ assert_eq!(tensor.argmax_keepdim(0)?.to_vec2::<u32>()?, &[[1899, 1899]]);
+
+ // Make the tensor non contiguous.
+ let tensor = tensor.t()?.contiguous()?.t()?;
+ assert_eq!(
+ tensor
+ .argmax_keepdim(0)?
+ .argmax_keepdim(1)?
+ .to_vec2::<u32>()?,
+ &[[0]]
+ );
+ assert_eq!(
+ tensor
+ .argmax_keepdim(1)?
+ .argmax_keepdim(0)?
+ .to_vec2::<u32>()?,
+ &[[0]]
+ );
+ assert_eq!(tensor.argmax_keepdim(0)?.to_vec2::<u32>()?, &[[1899, 1899]]);
+
+ let t1 = tensor.reshape((190, 5, 4))?;
+ let t2 = t1.transpose(0, 2)?.contiguous()?.transpose(0, 2)?;
+ for tensor in [t1, t2] {
+ assert_eq!(
+ tensor
+ .argmax_keepdim(0)?
+ .argmax_keepdim(2)?
+ .argmax_keepdim(1)?
+ .to_vec3::<u32>()?,
+ &[[[0]]]
+ );
+ assert_eq!(
+ tensor.argmax_keepdim(0)?.to_vec3::<u32>()?,
+ &[[
+ [189, 189, 189, 189],
+ [189, 189, 189, 189],
+ [189, 189, 189, 189],
+ [189, 189, 189, 189],
+ [189, 189, 189, 189],
+ ]]
+ );
+ }
+ Ok(())
+}
+
fn narrow(device: &Device) -> Result<()> {
let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]];
let tensor = Tensor::new(data, device)?;
@@ -581,6 +853,10 @@ test_device!(narrow, narrow_cpu, narrow_gpu);
test_device!(broadcast, broadcast_cpu, broadcast_gpu);
test_device!(cat, cat_cpu, cat_gpu);
test_device!(sum, sum_cpu, sum_gpu);
+test_device!(min, min_cpu, min_gpu);
+test_device!(max, max_cpu, max_gpu);
+test_device!(argmax, argmax_cpu, argmax_gpu);
+test_device!(argmin, argmin_cpu, argmin_gpu);
test_device!(transpose, transpose_cpu, transpose_gpu);
test_device!(binary_op, binary_op_cpu, binary_op_gpu);
test_device!(embeddings, embeddings_cpu, embeddings_gpu);
diff --git a/candle-examples/examples/simple-training/main.rs b/candle-examples/examples/simple-training/main.rs
index f15aa60c..b78d937b 100644
--- a/candle-examples/examples/simple-training/main.rs
+++ b/candle-examples/examples/simple-training/main.rs
@@ -142,17 +142,20 @@ fn training_loop<M: Model>(
let dev = candle::Device::cuda_if_available(0)?;
let train_labels = m.train_labels;
- let train_images = m.train_images;
- let train_labels = train_labels.to_dtype(DType::U32)?.unsqueeze(1)?;
+ let train_images = m.train_images.to_device(&dev)?;
+ let train_labels = train_labels
+ .to_dtype(DType::U32)?
+ .unsqueeze(1)?
+ .to_device(&dev)?;
- let vs = VarStore::new(DType::F32, dev);
+ let vs = VarStore::new(DType::F32, dev.clone());
let model = M::new(vs.clone())?;
let all_vars = vs.all_vars();
let all_vars = all_vars.iter().collect::<Vec<_>>();
let sgd = candle_nn::SGD::new(&all_vars, learning_rate);
- let test_images = m.test_images;
- let test_labels = m.test_labels.to_dtype(DType::U32)?;
+ let test_images = m.test_images.to_device(&dev)?;
+ let test_labels = m.test_labels.to_dtype(DType::U32)?.to_device(&dev)?;
for epoch in 1..200 {
let logits = model.forward(&train_images)?;
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
diff --git a/candle-kernels/src/cuda_utils.cuh b/candle-kernels/src/cuda_utils.cuh
index fe3acc9e..ffdf4026 100644
--- a/candle-kernels/src/cuda_utils.cuh
+++ b/candle-kernels/src/cuda_utils.cuh
@@ -144,7 +144,8 @@ __device__ __forceinline__ double copysigng(double a, double b) { return copysig
__device__ __forceinline__ uint32_t ming(uint32_t a, uint32_t b) { return min(a, b); }
__device__ __forceinline__ uint32_t maxg(uint32_t a, uint32_t b) { return max(a, b); }
-
+__device__ __forceinline__ uint8_t ming(uint8_t a, uint8_t b) { return min(a, b); }
+__device__ __forceinline__ uint8_t maxg(uint8_t a, uint8_t b) { return max(a, b); }
#if __CUDA_ARCH__ >= 530
__device__ __forceinline__ __half powg(__half a, __half b) { return __float2half(powf(__half2float(a), __half2float(b))); }
__device__ __forceinline__ bool isnang(__half a) { return __hisnan(a); }
diff --git a/candle-kernels/src/reduce.cu b/candle-kernels/src/reduce.cu
index 39a09069..9d4fc710 100644
--- a/candle-kernels/src/reduce.cu
+++ b/candle-kernels/src/reduce.cu
@@ -125,7 +125,116 @@ fast_min(const size_t src_numel, const size_t el_to_sum_per_block,
dst[dst_id] = shr[0];
}
-#define FAST_OP(TYPENAME, MIN_NAME, MAX_NAME, SUM_NAME) \
+template <typename T>
+__device__ void
+fast_argmin(const size_t src_numel, const size_t el_to_sum_per_block,
+ const size_t num_dims, const size_t *info, const T *src, uint32_t *dst) {
+ const size_t *dims = info;
+ const size_t *strides = info + num_dims;
+
+ __shared__ T shr[BLOCK_SIZE];
+ __shared__ uint32_t shr_index[BLOCK_SIZE];
+ size_t tid = threadIdx.x;
+ size_t dst_id = blockIdx.x;
+
+ // Not sure how that works on uint32_t and uint8_t but it seems to do ok.
+ shr[tid] = INFINITY;
+ shr_index[tid] = 0xFFFFFFFF;
+ bool not_set = true;
+ // Elements summed in this block range from dst_id * el_to_sum_per_block
+ // to (dst_id + 1) * el_to_sum_per_block.
+ size_t start_idx = dst_id * el_to_sum_per_block;
+ size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
+ size_t idx = start_idx + tid;
+
+ while (idx < stop_idx) {
+ // TODO: Fast version for the contiguous case.
+ size_t strided_i = get_strided_index(idx, num_dims, dims, strides);
+ if (not_set || src[strided_i] < shr[tid]) {
+ shr[tid] = src[strided_i];
+ // Assume that the reduction takes place over the last dimension which is contiguous.
+ shr_index[tid] = idx % dims[num_dims - 1];
+ not_set = false;
+ }
+ idx += blockDim.x;
+ }
+
+ // Parallel reduction, see the slides:
+ // https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf
+ // https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
+ for (int s = blockDim.x / 2; s > 0; s >>= 1) {
+ __syncthreads();
+ if (tid < s && shr[tid + s] < shr[tid]) {
+ shr[tid] = shr[tid + s];
+ shr_index[tid] = shr_index[tid + s];
+ }
+ }
+
+ if (tid == 0)
+ dst[dst_id] = shr_index[0];
+}
+
+template <typename T>
+__device__ void
+fast_argmax(const size_t src_numel, const size_t el_to_sum_per_block,
+ const size_t num_dims, const size_t *info, const T *src, uint32_t *dst) {
+ const size_t *dims = info;
+ const size_t *strides = info + num_dims;
+
+ __shared__ T shr[BLOCK_SIZE];
+ __shared__ uint32_t shr_index[BLOCK_SIZE];
+ size_t tid = threadIdx.x;
+ size_t dst_id = blockIdx.x;
+
+ shr[tid] = -INFINITY;
+ shr_index[tid] = 0xFFFFFFFF;
+ bool not_set = true;
+ // Elements summed in this block range from dst_id * el_to_sum_per_block
+ // to (dst_id + 1) * el_to_sum_per_block.
+ size_t start_idx = dst_id * el_to_sum_per_block;
+ size_t stop_idx = min(start_idx + el_to_sum_per_block, src_numel);
+ size_t idx = start_idx + tid;
+
+ while (idx < stop_idx) {
+ // TODO: Fast version for the contiguous case.
+ size_t strided_i = get_strided_index(idx, num_dims, dims, strides);
+ if (not_set || src[strided_i] > shr[tid]) {
+ shr[tid] = src[strided_i];
+ // Assume that the reduction takes place over the last dimension which is contiguous.
+ shr_index[tid] = idx % dims[num_dims - 1];
+ not_set = false;
+ }
+ idx += blockDim.x;
+ }
+
+ // Parallel reduction, see the slides:
+ // https://www.olcf.ornl.gov/wp-content/uploads/2019/12/05_Atomics_Reductions_Warp_Shuffle.pdf
+ // https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
+ for (int s = blockDim.x / 2; s > 0; s >>= 1) {
+ __syncthreads();
+ if (tid < s && shr[tid + s] > shr[tid]) {
+ shr[tid] = shr[tid + s];
+ shr_index[tid] = shr_index[tid + s];
+ }
+ }
+
+ if (tid == 0)
+ dst[dst_id] = shr_index[0];
+}
+
+#define FAST_OP(TYPENAME, MIN_NAME, MAX_NAME, ARGMIN_NAME, ARGMAX_NAME, SUM_NAME) \
+ extern "C" __global__ void ARGMIN_NAME( \
+ const size_t src_numel, const size_t el_to_sum_per_block, \
+ const size_t num_dims, const size_t *info, const TYPENAME *src, \
+ uint32_t *dst) { \
+ fast_argmin(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
+ } \
+ extern "C" __global__ void ARGMAX_NAME( \
+ const size_t src_numel, const size_t el_to_sum_per_block, \
+ const size_t num_dims, const size_t *info, const TYPENAME *src, \
+ uint32_t *dst) { \
+ fast_argmax(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
+ } \
extern "C" __global__ void MIN_NAME( \
const size_t src_numel, const size_t el_to_sum_per_block, \
const size_t num_dims, const size_t *info, const TYPENAME *src, \
@@ -183,18 +292,19 @@ fast_min(const size_t src_numel, const size_t el_to_sum_per_block,
#if __CUDA_ARCH__ >= 800
SUM_OP(__nv_bfloat16, sum_bf16)
-FAST_OP(__nv_bfloat16, fast_min_bf16, fast_max_bf16, fast_sum_bf16)
+FAST_OP(__nv_bfloat16, fast_min_bf16, fast_max_bf16, fast_argmin_bf16, fast_argmax_bf16, fast_sum_bf16)
#endif
#if __CUDA_ARCH__ >= 530
SUM_OP(__half, sum_f16)
-FAST_OP(__half, fast_min_f16, fast_max_f16, fast_sum_f16)
+FAST_OP(__half, fast_min_f16, fast_max_f16, fast_argmin_f16, fast_argmax_f16, fast_sum_f16)
#endif
SUM_OP(float, sum_f32)
SUM_OP(double, sum_f64)
SUM_OP(uint32_t, sum_u32)
-FAST_OP(float, fast_min_f32, fast_max_f32, fast_sum_f32)
-FAST_OP(double, fast_min_f64, fast_max_f64, fast_sum_f64)
-FAST_OP(uint32_t, fast_min_u32, fast_max_u32, fast_sum_u32)
+FAST_OP(float, fast_min_f32, fast_max_f32, fast_argmin_f32, fast_argmax_f32, fast_sum_f32)
+FAST_OP(double, fast_min_f64, fast_max_f64, fast_argmin_f64, fast_argmax_f64, fast_sum_f64)
+FAST_OP(uint32_t, fast_min_u32, fast_max_u32, fast_argmin_u32, fast_argmax_u32, fast_sum_u32)
+FAST_OP(uint8_t, fast_min_u8, fast_max_u8, fast_argmin_u8, fast_argmax_u8, fast_sum_u8)