diff options
-rw-r--r-- | candle-core/src/cuda_backend.rs | 62 | ||||
-rw-r--r-- | candle-core/tests/conv_tests.rs | 20 | ||||
-rw-r--r-- | candle-kernels/src/conv.cu | 79 |
3 files changed, 143 insertions, 18 deletions
diff --git a/candle-core/src/cuda_backend.rs b/candle-core/src/cuda_backend.rs index 25d73f9b..b7756fa6 100644 --- a/candle-core/src/cuda_backend.rs +++ b/candle-core/src/cuda_backend.rs @@ -1149,6 +1149,55 @@ impl<'a> Map2 for Conv2D<'a> { } } +struct ConvTranspose1D<'a>(&'a crate::conv::ParamsConvTranspose1D); +impl<'a> Map2 for ConvTranspose1D<'a> { + fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>( + &self, + inp: &CudaSlice<T>, + inp_l: &Layout, + k: &CudaSlice<T>, + k_l: &Layout, + dev: &CudaDevice, + ) -> Result<CudaSlice<T>> { + // Kernel shape: (c_in_k, c_out, l_k) + // Input shape: (b_size, c_in, l_in) + let p = &self.0; + let l_out = p.l_out(); + let dst_el = p.c_out * l_out * p.b_size; + let inp = &inp.slice(inp_l.start_offset()..); + let k = &k.slice(k_l.start_offset()..); + let shape = inp_l.shape(); + let dims = shape.dims(); + let el = shape.elem_count(); + + // SAFETY: Set later by running the kernel. + let out = unsafe { dev.alloc::<T>(dst_el) }.w()?; + let cfg = LaunchConfig::for_num_elems(dst_el as u32); + let func = dev.get_or_load_func(&kernel_name::<T>("conv_transpose1d"), kernels::CONV)?; + let ds = if dims.len() == 3 { + [dims, inp_l.stride(), k_l.dims(), k_l.stride()].concat() + } else { + crate::bail!("unexpected input shape for conv_transpose1d {dims:?}") + }; + let ds = dev.htod_copy(ds).w()?; + let params = ( + el, + l_out, + p.stride, + p.padding, + p.output_padding, + p.dilation, + &ds, + inp, + k, + &out, + ); + // SAFETY: ffi. + unsafe { func.launch(cfg, params) }.w()?; + Ok(out) + } +} + struct ConvTranspose2D<'a>(&'a crate::conv::ParamsConvTranspose2D); impl<'a> Map2 for ConvTranspose2D<'a> { fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>( @@ -1810,12 +1859,15 @@ impl BackendStorage for CudaStorage { fn conv_transpose1d( &self, - _: &Layout, - _: &Self, - _: &Layout, - _: &crate::conv::ParamsConvTranspose1D, + l: &Layout, + kernel: &Self, + kernel_l: &Layout, + params: &crate::conv::ParamsConvTranspose1D, ) -> Result<Self> { - todo!() + let device = self.device().clone(); + let slice = + ConvTranspose1D(params).map(&self.slice, l, &kernel.slice, kernel_l, &device)?; + Ok(Self { slice, device }) } #[cfg(not(feature = "cudnn"))] diff --git a/candle-core/tests/conv_tests.rs b/candle-core/tests/conv_tests.rs index 39c6cec0..5bbd903d 100644 --- a/candle-core/tests/conv_tests.rs +++ b/candle-core/tests/conv_tests.rs @@ -50,17 +50,15 @@ fn conv1d(dev: &Device) -> Result<()> { test_utils::to_vec1_round(&res.flatten_all()?, 4)?, [2.4509, 2.6357, -1.3336, 4.1393, 0.5657, 1.8091, -1.1784, 3.5675, 0.5069, 3.3352] ); - if dev.is_cpu() { - let res = t.conv_transpose1d(&w.transpose(0, 1)?, 0, 0, 1, 1)?; - assert_eq!(res.dims(), [1, 2, 7]); - assert_eq!( - test_utils::to_vec1_round(&res.flatten_all()?, 4)?, - [ - 0.0699, -1.2899, 8.3018, 5.5873, 2.4572, -2.6143, -0.0706, 1.8765, 4.8318, 1.1538, - 4.7076, -5.9745, -0.8276, 1.621 - ], - ); - } + let res = t.conv_transpose1d(&w.transpose(0, 1)?, 0, 0, 1, 1)?; + assert_eq!(res.dims(), [1, 2, 7]); + assert_eq!( + test_utils::to_vec1_round(&res.flatten_all()?, 4)?, + [ + 0.0699, -1.2899, 8.3018, 5.5873, 2.4572, -2.6143, -0.0706, 1.8765, 4.8318, 1.1538, + 4.7076, -5.9745, -0.8276, 1.621 + ], + ); Ok(()) } diff --git a/candle-kernels/src/conv.cu b/candle-kernels/src/conv.cu index 9c8ce00f..fed920f1 100644 --- a/candle-kernels/src/conv.cu +++ b/candle-kernels/src/conv.cu @@ -71,7 +71,6 @@ __device__ void im2col1d( } const size_t *src_dims = info; const size_t *src_s = info + 3; - const size_t b_in = src_dims[0]; const size_t c_in = src_dims[1]; const size_t l_in = src_dims[2]; @@ -120,7 +119,6 @@ __device__ void im2col( } const size_t *src_dims = info; const size_t *src_s = info + 4; - const size_t b_in = src_dims[0]; const size_t c_in = src_dims[1]; const size_t h_in = src_dims[2]; const size_t w_in = src_dims[3]; @@ -225,6 +223,60 @@ __device__ void conv2d( dst[dst_i] = static_cast<T>(d); } +// Naive implementation of conv_transpose1d. +template <typename T, typename A> +__device__ void conv_transpose1d( + const size_t src_numel, + const size_t l_out, + const size_t stride, + const size_t padding, + const size_t out_padding, + const size_t dilation, + const size_t *info, + const T *src, + const T *kernel, + T *dst +) { + const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x; + // src: (b_size, c_in, l_in) + // k: (c_in, c_out, l_k) + const size_t *src_dims = info; + const size_t *src_s = info + 3; + const size_t *k_dims = info + 6; + const size_t *k_s = info + 9; + const size_t l_k = k_dims[2]; + const size_t c_out = k_dims[1]; + const size_t c_in = src_dims[1]; + const size_t l_in = src_dims[2]; + if (dst_i >= src_dims[0] * c_out * l_out) { + return; + } + + // TODO + const size_t b_idx = dst_i / (l_out * c_out); + const size_t dst_c_idx = (dst_i / l_out) % c_out; + // NCL layout. + const size_t out_x = dst_i % l_out; + + const size_t src_idx0 = b_idx * src_s[0]; + A d = 0; + for (int k_x = 0; k_x < (int)l_k; ++k_x) { + // let out_x = inp_x * p.stride + k_x * p.dilation - p.padding; + int inp_x_stride = (int)(out_x + padding) - k_x * dilation; + if (inp_x_stride < 0 || inp_x_stride % stride) { + continue; + } + int inp_x = inp_x_stride / stride; + if (inp_x >= l_in) continue; + for (size_t src_c_idx = 0; src_c_idx < c_in; ++src_c_idx) { + const size_t src_idx = src_idx0 + src_c_idx * src_s[1] + inp_x * src_s[2]; + const size_t k_idx = src_c_idx * k_s[0] + dst_c_idx * k_s[1] + k_x * k_s[2]; + d += static_cast<A>(src[src_idx]) * static_cast<A>(kernel[k_idx]); + } + } + dst[dst_i] = static_cast<T>(d); +} + // Naive implementation of conv_transpose2d. template <typename T, typename A> __device__ void conv_transpose2d( @@ -507,6 +559,22 @@ extern "C" __global__ void FN_NAME( \ im2col<TYPENAME>(dst_numel, h_out, w_out, h_k, w_k, stride, padding, dilation, info, src, dst); \ } \ +#define CONVT1D_OP(TYPENAME, TYPEACC, FN_NAME) \ +extern "C" __global__ void FN_NAME( \ + const size_t src_numel, \ + const size_t l_out, \ + const size_t stride, \ + const size_t padding, \ + const size_t out_padding, \ + const size_t dilation, \ + const size_t *info, \ + const TYPENAME *src, \ + const TYPENAME *kernel, \ + TYPENAME *dst \ +) { \ + conv_transpose1d<TYPENAME, TYPEACC>(src_numel, l_out, stride, padding, out_padding, dilation, info, src, kernel, dst); \ +} \ + #define CONVT2D_OP(TYPENAME, TYPEACC, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t src_numel, \ @@ -568,6 +636,7 @@ extern "C" __global__ void FN_NAME( \ #if __CUDA_ARCH__ >= 800 CONV1D_OP(__nv_bfloat16, float, conv1d_bf16) CONV2D_OP(__nv_bfloat16, float, conv2d_bf16) +CONVT1D_OP(__nv_bfloat16, float, conv_transpose1d_bf16) CONVT2D_OP(__nv_bfloat16, float, conv_transpose2d_bf16) AVG_POOL2D_OP(__nv_bfloat16, float, avg_pool2d_bf16) MAX_POOL2D_OP(__nv_bfloat16, max_pool2d_bf16) @@ -579,6 +648,7 @@ IM2COL1D_OP(__nv_bfloat16, im2col1d_bf16) #if __CUDA_ARCH__ >= 530 CONV1D_OP(__half, float, conv1d_f16) CONV2D_OP(__half, float, conv2d_f16) +CONVT1D_OP(__half, float, conv_transpose1d_f16) CONVT2D_OP(__half, float, conv_transpose2d_f16) AVG_POOL2D_OP(__half, float, avg_pool2d_f16) MAX_POOL2D_OP(__half, max_pool2d_f16) @@ -597,6 +667,11 @@ CONV2D_OP(double, double, conv2d_f64) CONV2D_OP(uint8_t, uint8_t, conv2d_u8) CONV2D_OP(uint32_t, uint32_t, conv2d_u32) +CONVT1D_OP(float, float, conv_transpose1d_f32) +CONVT1D_OP(double, double, conv_transpose1d_f64) +CONVT1D_OP(uint8_t, uint8_t, conv_transpose1d_u8) +CONVT1D_OP(uint32_t, uint32_t, conv_transpose1d_u32) + CONVT2D_OP(float, float, conv_transpose2d_f32) CONVT2D_OP(double, double, conv_transpose2d_f64) CONVT2D_OP(uint8_t, uint8_t, conv_transpose2d_u8) |