summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--candle-core/src/device.rs1
-rw-r--r--candle-core/src/lib.rs2
-rw-r--r--candle-core/src/metal_backend.rs130
-rw-r--r--candle-core/src/tensor.rs4
-rw-r--r--candle-metal-kernels/src/indexing.metal33
-rw-r--r--candle-metal-kernels/src/lib.rs426
6 files changed, 340 insertions, 256 deletions
diff --git a/candle-core/src/device.rs b/candle-core/src/device.rs
index de57c03a..73eb9640 100644
--- a/candle-core/src/device.rs
+++ b/candle-core/src/device.rs
@@ -146,6 +146,7 @@ impl Device {
match (self, rhs) {
(Self::Cpu, Self::Cpu) => true,
(Self::Cuda(lhs), Self::Cuda(rhs)) => lhs.same_device(rhs),
+ (Self::Metal(lhs), Self::Metal(rhs)) => lhs.same_device(rhs),
_ => false,
}
}
diff --git a/candle-core/src/lib.rs b/candle-core/src/lib.rs
index da61bdb5..36f5f6b1 100644
--- a/candle-core/src/lib.rs
+++ b/candle-core/src/lib.rs
@@ -53,6 +53,8 @@ mod dummy_metal_backend;
pub mod error;
mod indexer;
pub mod layout;
+#[cfg(feature = "metal")]
+pub mod metal_backend;
#[cfg(feature = "mkl")]
mod mkl;
pub mod npy;
diff --git a/candle-core/src/metal_backend.rs b/candle-core/src/metal_backend.rs
index 04a2c3dd..68a96672 100644
--- a/candle-core/src/metal_backend.rs
+++ b/candle-core/src/metal_backend.rs
@@ -1,17 +1,16 @@
use crate::backend::{BackendDevice, BackendStorage};
-use crate::conv::{ParamsConv1D, ParamsConv2D, ParamsConvTranspose2D};
+use crate::conv::{ParamsConv1D, ParamsConv2D, ParamsConvTranspose1D, ParamsConvTranspose2D};
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{CpuStorage, DType, Layout, Result, Shape};
use candle_metal_kernels;
-use candle_metal_kernels::{void_ptr, Kernels, Source};
+use candle_metal_kernels::Kernels;
use core::mem;
use half::{bf16, f16};
use metal;
use metal::mps::matrix::encode_gemm;
use metal::mps::Float32;
-use metal::{Buffer, CommandQueue, CompileOptions, MTLResourceOptions, MTLSize, NSUInteger};
+use metal::{Buffer, CommandQueue, MTLResourceOptions, NSUInteger};
use std::sync::Arc;
-use tracing::debug;
/// Metal related errors
#[derive(thiserror::Error, Debug)]
@@ -113,7 +112,6 @@ impl BackendStorage for MetalStorage {
let device = self.device().clone();
let shape = layout.shape();
- let dims = shape.dims();
let el = shape.elem_count();
let dtype = self.dtype;
@@ -174,10 +172,8 @@ impl BackendStorage for MetalStorage {
stride.push(src_stride[dim_idx]);
}
- let el_to_sum_per_block = src_el / dst_el;
// The reduction loop requires the shared array to be properly initialized and for
// this we want the number of threads to be a power of two.
- let block_dim = usize::min(1024, el_to_sum_per_block).next_power_of_two();
let (name, check_empty, return_index) = match (op, self.dtype) {
(ReduceOp::Sum, DType::F32) => ("fast_sum_float", false, false),
(ReduceOp::Min, DType::F32) => ("fast_min_float", true, false),
@@ -219,13 +215,10 @@ impl BackendStorage for MetalStorage {
fn to_dtype(&self, layout: &Layout, dtype: DType) -> Result<Self> {
let device = self.device();
let shape = layout.shape();
- let dims = shape.dims();
let el_count = shape.elem_count();
let mut buffer = device.new_buffer(el_count, dtype);
let command_buffer = device.command_queue.new_command_buffer();
if layout.is_contiguous() {
- use candle_metal_kernels::unary::contiguous;
-
let kernel_name = match (self.dtype, dtype) {
(DType::U32, DType::F32) => "cast_u32_f32",
(left, right) => todo!("to dtype {left:?} - {right:?}"),
@@ -250,12 +243,12 @@ impl BackendStorage for MetalStorage {
command_buffer.commit();
// command_buffer.wait_until_scheduled();
- debug!(
- "cast {:?} - {:?} - {:?}",
- dtype,
- self.buffer.length(),
- buffer.length()
- );
+ // debug!(
+ // "cast {:?} - {:?} - {:?}",
+ // dtype,
+ // self.buffer.length(),
+ // buffer.length()
+ // );
Ok(Self {
buffer,
device: device.clone(),
@@ -267,15 +260,8 @@ impl BackendStorage for MetalStorage {
let device = self.device();
let dtype = self.dtype;
let shape = layout.shape();
- let dims = shape.dims();
let el_count = shape.elem_count();
let mut buffer = device.new_buffer(el_count, dtype);
- // TODO remove
- // return Ok(Self {
- // buffer,
- // device: device.clone(),
- // dtype,
- // });
let command_buffer = device.command_queue.new_command_buffer();
if layout.is_contiguous() {
use candle_metal_kernels::unary::contiguous;
@@ -302,17 +288,7 @@ impl BackendStorage for MetalStorage {
} else {
todo!("TODO Implement the kernel calling {}", B::KERNEL);
}
-
- let start = std::time::Instant::now();
command_buffer.commit();
- // command_buffer.wait_until_scheduled();
- debug!(
- "Unary {:?} - {:?} - {:?} - {:?}",
- B::KERNEL,
- start.elapsed(),
- self.buffer.length(),
- buffer.length()
- );
Ok(Self {
buffer,
@@ -330,7 +306,6 @@ impl BackendStorage for MetalStorage {
let device = self.device();
let dtype = self.dtype;
let shape = lhs_l.shape();
- let dims = shape.dims();
let el_count = shape.elem_count();
let mut buffer = device.new_buffer(el_count, dtype);
let command_buffer = device.command_queue.new_command_buffer();
@@ -385,17 +360,7 @@ impl BackendStorage for MetalStorage {
)
.map_err(MetalError::from)?;
}
-
- let start = std::time::Instant::now();
command_buffer.commit();
- // command_buffer.wait_until_scheduled();
- debug!(
- "Binary {:?} - {:?} - {:?} - {:?}",
- B::KERNEL,
- start.elapsed(),
- self.buffer.length(),
- buffer.length()
- );
Ok(Self {
buffer,
@@ -452,6 +417,16 @@ impl BackendStorage for MetalStorage {
todo!()
}
+ fn conv_transpose1d(
+ &self,
+ _l: &Layout,
+ _kernel: &Self,
+ _kernel_l: &Layout,
+ _params: &ParamsConvTranspose1D,
+ ) -> Result<Self> {
+ todo!()
+ }
+
fn conv2d(
&self,
_l: &Layout,
@@ -504,34 +479,28 @@ impl BackendStorage for MetalStorage {
todo!()
}
- fn index_select(&self, ids: &Self, src_l: &Layout, ids_l: &Layout, dim: usize) -> Result<Self> {
- debug!(
- "TODO Index select {:?} {:?} {src_l:?} {ids_l:?} {dim:?}",
- self.buffer.length(),
- ids.buffer.length(),
- );
- let src = self;
- let ids_shape = ids_l.shape();
- let ids_dims = ids_shape.dims();
- // let ds = dev.htod_copy([ids_dims, ids_l.stride()].concat()).w()?;
- // let src = match src_l.contiguous_offsets() {
- // Some((o1, o2)) => src.slice(o1..o2),
- // None => Err(crate::Error::RequiresContiguous { op: "index-select" }.bt())?,
- // };
- let left_size: usize = src_l.dims()[..dim].iter().product();
- let right_size: usize = src_l.dims()[dim + 1..].iter().product();
- let src_dim_size = src_l.dims()[dim];
- let ids_dim_size = ids_shape.elem_count();
- let dst_el = ids_shape.elem_count() * left_size * right_size;
- let dtype = self.dtype;
- let device = self.device();
- let buffer = device.new_buffer(dst_el, dtype);
- Ok(Self {
- buffer,
- device: device.clone(),
- dtype,
- })
- // todo!()
+ fn index_select(
+ &self,
+ _ids: &Self,
+ _src_l: &Layout,
+ _ids_l: &Layout,
+ _dim: usize,
+ ) -> Result<Self> {
+ todo!("Index select");
+ // let ids_shape = ids_l.shape();
+ // let left_size: usize = src_l.dims()[..dim].iter().product();
+ // let right_size: usize = src_l.dims()[dim + 1..].iter().product();
+ // let src_dim_size = src_l.dims()[dim];
+ // let ids_dim_size = ids_shape.elem_count();
+ // let dst_el = ids_shape.elem_count() * left_size * right_size;
+ // let dtype = self.dtype;
+ // let device = self.device();
+ // let buffer = device.new_buffer(dst_el, dtype);
+ // Ok(Self {
+ // buffer,
+ // device: device.clone(),
+ // dtype,
+ // })
}
fn index_add(
@@ -571,7 +540,6 @@ impl BackendStorage for MetalStorage {
fn copy_strided_src(&self, dst: &mut Self, dst_offset: usize, src_l: &Layout) -> Result<()> {
let src_shape = src_l.shape();
- let dims = src_shape.dims();
let el_count = src_shape.elem_count();
if el_count == 0 {
return Ok(());
@@ -637,7 +605,7 @@ impl MetalStorage {
(DType::F32, DType::F32) => {
let mut out_buffer = self.device.new_buffer(elem_count, self.dtype);
if b != 1 {
- debug!("TODO implement batched matmul for B={b}");
+ // debug!("TODO implement batched matmul for B={b}");
// bail!("Didn't implemented strided matmul yet");
return Ok(Self {
buffer: out_buffer,
@@ -646,12 +614,12 @@ impl MetalStorage {
});
}
if !lhs_l.is_contiguous() || !rhs_l.is_contiguous() {
- debug!(
- "TODO non contiguous matmul yet {:?} {:?} - {:?} - {transpose_right}",
- lhs_l.is_contiguous(),
- rhs_l.is_contiguous(),
- rhs_l
- );
+ // debug!(
+ // "TODO non contiguous matmul yet {:?} {:?} - {:?} - {transpose_right}",
+ // lhs_l.is_contiguous(),
+ // rhs_l.is_contiguous(),
+ // rhs_l
+ // );
return Ok(Self {
buffer: out_buffer,
device: self.device.clone(),
@@ -659,7 +627,7 @@ impl MetalStorage {
});
}
- debug!("TODO GEMM");
+ // debug!("TODO GEMM");
let command_buffer = self.device.command_queue.new_command_buffer();
encode_gemm::<Float32, Float32, Float32>(
&self.device,
diff --git a/candle-core/src/tensor.rs b/candle-core/src/tensor.rs
index 2a0924b6..f7f66668 100644
--- a/candle-core/src/tensor.rs
+++ b/candle-core/src/tensor.rs
@@ -1859,7 +1859,11 @@ impl Tensor {
(Storage::Cpu(storage), Device::Cuda(cuda)) => {
Storage::Cuda(cuda.storage_from_cpu_storage(storage)?)
}
+ (Storage::Cpu(storage), Device::Metal(metal)) => {
+ Storage::Metal(metal.storage_from_cpu_storage(storage)?)
+ }
(Storage::Cuda(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
+ (Storage::Metal(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?),
(Storage::Cuda(storage), Device::Cuda(cuda)) => {
// TODO: Avoid passing through the cpu storage here, especially if the gpu ids
// are the same.
diff --git a/candle-metal-kernels/src/indexing.metal b/candle-metal-kernels/src/indexing.metal
index 528c109d..eefaef34 100644
--- a/candle-metal-kernels/src/indexing.metal
+++ b/candle-metal-kernels/src/indexing.metal
@@ -1,6 +1,39 @@
#include <metal_stdlib>
using namespace metal;
+kernel void is_u32_f32(
+ constant size_t &dst_size,
+ constant size_t &left_size,
+ constant size_t &src_dim_size,
+ constant size_t &right_size,
+ constant size_t &ids_size,
+
+ const device float *input,
+ const device uint *input_ids,
+ device float *output,
+
+ uint gid [[ thread_position_in_grid ]]
+) {
+
+ if (gid >= dst_size) {
+ return;
+ }
+
+ const size_t id_i = gid / right_size / left_size;
+ const size_t right_rank_i = gid % right_size;
+ const size_t left_rank_i = gid % left_size;
+
+ // Force prevent out of bounds indexing
+ // since there doesn't seem to be a good way to force crash
+ // No need to check for zero we're only allowing unsized.
+ const uint input_i = min(input_ids[id_i], (uint)(src_dim_size - 1));
+ const size_t src_i = ((input_i * right_size) + right_rank_i) * left_size + left_rank_i;
+
+ output[gid] = input[src_i];
+
+}
+
+
template <typename T, typename I>
void index_add(
device I *ids [[buffer(0)]],
diff --git a/candle-metal-kernels/src/lib.rs b/candle-metal-kernels/src/lib.rs
index d2c63115..1bcd56d1 100644
--- a/candle-metal-kernels/src/lib.rs
+++ b/candle-metal-kernels/src/lib.rs
@@ -1,7 +1,7 @@
#![allow(clippy::too_many_arguments)]
use metal::{
- Buffer, CommandBufferRef, CompileOptions, ComputePipelineDescriptor, Device, Function, Library,
- MTLSize,
+ Buffer, CommandBufferRef, CompileOptions, ComputeCommandEncoderRef, ComputePipelineDescriptor,
+ Device, Function, Library, MTLSize,
};
use std::collections::HashMap;
use std::ffi::c_void;
@@ -15,6 +15,70 @@ const TERNARY: &str = include_str!("ternary.metal");
const CAST: &str = include_str!("cast.metal");
const REDUCE: &str = include_str!("reduce.metal");
+fn set_param<P: EncoderParam>(encoder: &ComputeCommandEncoderRef, position: u64, data: P) {
+ <P as EncoderParam>::set_param(encoder, position, data)
+}
+trait EncoderParam {
+ fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self);
+}
+macro_rules! primitive {
+ ($type:ty) => {
+ impl EncoderParam for $type {
+ fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
+ encoder.set_bytes(
+ position,
+ core::mem::size_of::<$type>() as u64,
+ &data as *const $type as *const c_void,
+ );
+ }
+ }
+ };
+}
+primitive!(usize);
+primitive!(u32);
+primitive!(f32);
+
+impl<T> EncoderParam for &[T] {
+ fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
+ encoder.set_bytes(
+ position,
+ (core::mem::size_of::<T>() * data.len()) as u64,
+ data.as_ptr() as *const T as *const c_void,
+ );
+ }
+}
+
+impl EncoderParam for &Buffer {
+ fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
+ encoder.set_buffer(position, Some(data), 0);
+ }
+}
+impl EncoderParam for (&Buffer, usize) {
+ fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
+ encoder.set_buffer(position, Some(data.0), data.1 as u64);
+ }
+}
+impl EncoderParam for &mut Buffer {
+ fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
+ encoder.set_buffer(position, Some(data), 0);
+ }
+}
+impl EncoderParam for (&mut Buffer, usize) {
+ fn set_param(encoder: &ComputeCommandEncoderRef, position: u64, data: Self) {
+ encoder.set_buffer(position, Some(data.0), data.1 as u64);
+ }
+}
+
+macro_rules! set_params {
+ ($encoder:ident, ($($param:expr),+)) => (
+ let mut _index = 0;
+ $(
+ set_param($encoder, _index, $param);
+ _index += 1;
+ )*
+ );
+}
+
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Source {
Affine,
@@ -191,9 +255,7 @@ pub fn call_unary_contiguous(
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
- encoder.set_bytes(0, 4, void_ptr(&length));
- encoder.set_buffer(1, Some(input), 0);
- encoder.set_buffer(2, Some(output), 0);
+ set_params!(encoder, (length, input, output));
let thread_group_count = MTLSize {
width: 1,
@@ -239,24 +301,19 @@ pub fn call_unary_strided(
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
- encoder.set_bytes(0, std::mem::size_of::<usize>() as u64, void_ptr(&length));
- encoder.set_bytes(1, std::mem::size_of::<usize>() as u64, void_ptr(&num_dims));
- encoder.set_bytes(
- 2,
- std::mem::size_of_val(shape) as u64,
- shape.as_ptr() as *const c_void,
- );
- encoder.set_bytes(
- 3,
- std::mem::size_of_val(strides) as u64,
- strides.as_ptr() as *const c_void,
+ set_params!(
+ encoder,
+ (
+ length,
+ num_dims,
+ shape,
+ strides,
+ (input, offset),
+ (output, output_offset)
+ )
);
- encoder.set_buffer(4, Some(input), offset as u64);
- encoder.set_buffer(5, Some(output), output_offset as u64);
-
- let width = output.length();
-
+ let width: usize = shape.iter().product();
let thread_group_count = MTLSize {
width: 1,
height: 1,
@@ -264,7 +321,7 @@ pub fn call_unary_strided(
};
let thread_group_size = MTLSize {
- width: std::cmp::min(pipeline.max_total_threads_per_threadgroup(), width),
+ width: std::cmp::min(pipeline.max_total_threads_per_threadgroup(), width as u64),
height: 1,
depth: 1,
};
@@ -299,10 +356,7 @@ pub fn call_binary_contiguous(
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
- encoder.set_bytes(0, 4, void_ptr(&length));
- encoder.set_buffer(1, Some(left), 0);
- encoder.set_buffer(2, Some(right), 0);
- encoder.set_buffer(3, Some(output), 0);
+ set_params!(encoder, (length, left, right, output));
let thread_group_count = MTLSize {
width: 1,
@@ -348,32 +402,24 @@ pub fn call_binary_strided(
let num_dims: usize = shape.len();
let encoder = command_buffer.new_compute_command_encoder();
+ let width: usize = shape.iter().product();
encoder.set_compute_pipeline_state(&pipeline);
let length: usize = shape.iter().product();
- encoder.set_bytes(0, std::mem::size_of::<usize>() as u64, void_ptr(&length));
- encoder.set_bytes(1, std::mem::size_of::<usize>() as u64, void_ptr(&num_dims));
- encoder.set_bytes(
- 2,
- std::mem::size_of_val(shape) as u64,
- shape.as_ptr() as *const c_void,
- );
- encoder.set_bytes(
- 3,
- std::mem::size_of_val(left_strides) as u64,
- left_strides.as_ptr() as *const c_void,
- );
- encoder.set_bytes(
- 4,
- std::mem::size_of_val(right_strides) as u64,
- right_strides.as_ptr() as *const c_void,
- );
-
- encoder.set_buffer(5, Some(left_input), left_offset as u64);
- encoder.set_buffer(6, Some(right_input), right_offset as u64);
- encoder.set_buffer(7, Some(output), 0);
- let width = output.length();
+ set_params!(
+ encoder,
+ (
+ length,
+ num_dims,
+ shape,
+ left_strides,
+ right_strides,
+ (left_input, left_offset),
+ (right_input, right_offset),
+ output
+ )
+ );
let thread_group_count = MTLSize {
width: 1,
@@ -382,7 +428,7 @@ pub fn call_binary_strided(
};
let thread_group_size = MTLSize {
- width: std::cmp::min(pipeline.max_total_threads_per_threadgroup(), width),
+ width: std::cmp::min(pipeline.max_total_threads_per_threadgroup(), width as u64),
height: 1,
depth: 1,
};
@@ -416,9 +462,7 @@ pub fn call_cast_contiguous(
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
- encoder.set_bytes(0, 4, void_ptr(&length));
- encoder.set_buffer(1, Some(input), 0);
- encoder.set_buffer(2, Some(output), 0);
+ set_params!(encoder, (length, input, output));
let thread_group_count = MTLSize {
width: 1,
@@ -463,14 +507,7 @@ pub fn call_reduce_contiguous(
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
- encoder.set_bytes(0, core::mem::size_of::<usize>() as u64, void_ptr(&length));
- encoder.set_bytes(
- 1,
- core::mem::size_of::<usize>() as u64,
- void_ptr(&elements_to_sum),
- );
- encoder.set_buffer(2, Some(input), 0);
- encoder.set_buffer(3, Some(output), 0);
+ set_params!(encoder, (length, elements_to_sum, input, output));
let thread_group_count = MTLSize {
width: out_length as u64,
@@ -518,14 +555,7 @@ pub fn call_last_softmax(
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
- encoder.set_bytes(0, core::mem::size_of::<usize>() as u64, void_ptr(&length));
- encoder.set_bytes(
- 1,
- core::mem::size_of::<usize>() as u64,
- void_ptr(&elements_to_sum),
- );
- encoder.set_buffer(2, Some(input), 0);
- encoder.set_buffer(3, Some(output), 0);
+ set_params!(encoder, (length, elements_to_sum, input, output));
let out_length = length / elements_to_sum;
@@ -553,10 +583,6 @@ pub fn call_last_softmax(
Ok(())
}
-pub fn void_ptr<T>(v: &T) -> *const c_void {
- (v as *const T).cast()
-}
-
pub fn call_affine(
device: &Device,
command_buffer: &CommandBufferRef,
@@ -580,11 +606,7 @@ pub fn call_affine(
let encoder = command_buffer.new_compute_command_encoder();
encoder.set_compute_pipeline_state(&pipeline);
- encoder.set_bytes(0, core::mem::size_of::<usize>() as u64, void_ptr(&size));
- encoder.set_bytes(1, core::mem::size_of::<f32>() as u64, void_ptr(&mul));
- encoder.set_bytes(2, core::mem::size_of::<f32>() as u64, void_ptr(&add));
- encoder.set_buffer(3, Some(input), 0);
- encoder.set_buffer(4, Some(output), 0);
+ set_params!(encoder, (size, mul, add, input, output));
let thread_group_count = MTLSize {
width: 1,
@@ -632,36 +654,23 @@ pub fn call_where_cond_strided(
encoder.set_compute_pipeline_state(&pipeline);
let size: usize = shape.iter().product();
- encoder.set_bytes(0, core::mem::size_of::<usize>() as u64, void_ptr(&size));
- encoder.set_bytes(
- 1,
- core::mem::size_of::<usize>() as u64,
- void_ptr(&shape.len()),
- );
- encoder.set_bytes(
- 2,
- std::mem::size_of_val(shape) as u64,
- shape.as_ptr() as *const c_void,
- );
- encoder.set_bytes(
- 3,
- std::mem::size_of_val(cond_stride) as u64,
- cond_stride.as_ptr() as *const c_void,
- );
- encoder.set_bytes(
- 4,
- std::mem::size_of_val(left_stride) as u64,
- left_stride.as_ptr() as *const c_void,
- );
- encoder.set_bytes(
- 5,
- std::mem::size_of_val(right_stride) as u64,
- right_stride.as_ptr() as *const c_void,
+ let rank = shape.len();
+
+ set_params!(
+ encoder,
+ (
+ size,
+ rank,
+ shape,
+ cond_stride,
+ left_stride,
+ right_stride,
+ (cond, cond_offset),
+ (left, left_offset),
+ (right, right_offset),
+ output
+ )
);
- encoder.set_buffer(6, Some(cond), cond_offset as u64);
- encoder.set_buffer(7, Some(left), left_offset as u64);
- encoder.set_buffer(8, Some(right), right_offset as u64);
- encoder.set_buffer(9, Some(output), 0);
let thread_group_count = MTLSize {
width: 1,
@@ -686,7 +695,13 @@ mod tests {
use super::*;
use half::f16;
use metal::{CompileOptions, Device, MTLResourceOptions, MTLSize, NSUInteger};
- use std::mem;
+
+ fn new_buffer<T>(device: &Device, data: &[T]) -> Buffer {
+ let options = MTLResourceOptions::StorageModeManaged;
+ let ptr = data.as_ptr() as *const core::ffi::c_void;
+ let size = (data.len() * std::mem::size_of::<T>()) as u64;
+ device.new_buffer_with_data(ptr, size, options)
+ }
fn device() -> Device {
Device::system_default().unwrap()
@@ -707,13 +722,8 @@ mod tests {
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
- let options = MTLResourceOptions::StorageModeManaged;
- let input = device.new_buffer_with_data(
- v.as_ptr() as *const core::ffi::c_void,
- std::mem::size_of_val(v) as u64,
- options,
- );
- let mut output = device.new_buffer(std::mem::size_of_val(v) as u64, options);
+ let input = new_buffer(&device, v);
+ let mut output = new_buffer(&device, v);
call_unary_contiguous(
&device,
command_buffer,
@@ -735,16 +745,8 @@ mod tests {
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let options = MTLResourceOptions::StorageModeManaged;
- let left = device.new_buffer_with_data(
- x.as_ptr() as *const core::ffi::c_void,
- std::mem::size_of_val(x) as u64,
- options,
- );
- let right = device.new_buffer_with_data(
- y.as_ptr() as *const core::ffi::c_void,
- std::mem::size_of_val(y) as u64,
- options,
- );
+ let left = new_buffer(&device, x);
+ let right = new_buffer(&device, y);
let mut output = device.new_buffer(std::mem::size_of_val(x) as u64, options);
call_binary_contiguous(
&device,
@@ -770,15 +772,10 @@ mod tests {
offset: usize,
) -> Vec<T> {
let device = device();
- let options = MTLResourceOptions::StorageModeManaged;
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
- let input = device.new_buffer_with_data(
- v.as_ptr() as *const core::ffi::c_void,
- std::mem::size_of_val(v) as u64,
- options,
- );
- let mut output = device.new_buffer(std::mem::size_of_val(v) as u64, options);
+ let input = new_buffer(&device, v);
+ let mut output = new_buffer(&device, v);
let kernels = Kernels::new();
call_unary_strided(
&device,
@@ -893,13 +890,9 @@ mod tests {
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
- let options = MTLResourceOptions::StorageModeManaged;
- let input = device.new_buffer_with_data(
- v.as_ptr() as *const core::ffi::c_void,
- std::mem::size_of_val(v) as u64,
- options,
- );
- let mut output = device.new_buffer((v.len() * core::mem::size_of::<U>()) as u64, options);
+ let input = new_buffer(&device, v);
+ let mut output = new_buffer(&device, v);
+
call_cast_contiguous(
&device,
command_buffer,
@@ -935,14 +928,9 @@ mod tests {
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
- let options = MTLResourceOptions::StorageModeManaged;
- let input = device.new_buffer_with_data(
- v.as_ptr() as *const core::ffi::c_void,
- std::mem::size_of_val(v) as u64,
- options,
- );
- let mut output = device.new_buffer(std::mem::size_of_val(v) as u64, options);
+ let input = new_buffer(&device, v);
+ let mut output = new_buffer(&device, v);
let size = v.len();
@@ -979,6 +967,104 @@ mod tests {
}
#[test]
+ fn index_select() {
+ let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
+ let shape = [5, 2];
+ let ids = [0u32, 4, 2];
+ let dim = 0;
+ let result = run_index_select(&embedding, &shape, &ids, dim);
+ assert_eq!(result, vec![1.0f32, 2.0, 9.0, 10.0, 5.0, 6.0]);
+
+ let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
+ let shape = [2, 5];
+ let ids = [0u32, 1, 0];
+ let dim = 0;
+ let result = run_index_select(&embedding, &shape, &ids, dim);
+ assert_eq!(
+ result,
+ vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 1.0f32, 2.0, 3.0, 4.0, 5.0]
+ );
+
+ let embedding = [1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
+ let shape = [5, 2];
+ let ids = [0u32, 1, 0];
+ let dim = 1;
+ let result = run_index_select(&embedding, &shape, &ids, dim);
+ assert_eq!(
+ result,
+ vec![1.0f32, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 1.0f32, 2.0, 3.0, 4.0, 5.0]
+ );
+ }
+
+ fn run_index_select<T: Clone, I: Clone + std::fmt::Debug>(
+ embeddings: &[T],
+ shape: &[usize],
+ ids: &[I],
+ dim: usize,
+ ) -> Vec<T> {
+ let device = Device::system_default().expect("no device found");
+ let options = CompileOptions::new();
+ let library = device.new_library_with_source(INDEXING, &options).unwrap();
+
+ let left_size: usize = shape[..dim].iter().product();
+ let right_size: usize = shape[dim + 1..].iter().product();
+ let src_dim_size = shape[dim];
+ let dst_el = ids.len() * left_size * right_size;
+ let ids_size = ids.len();
+
+ let function = library.get_function("is_u32_f32", None).unwrap();
+ let pipeline = device
+ .new_compute_pipeline_state_with_function(&function)
+ .unwrap();
+
+ let command_queue = device.new_command_queue();
+ let command_buffer = command_queue.new_command_buffer();
+ let encoder = command_buffer.new_compute_command_encoder();
+
+ encoder.set_compute_pipeline_state(&pipeline);
+
+ let embeddings_buffer = new_buffer(&device, &embeddings);
+ let ids_buffer = new_buffer(&device, &ids);
+ let mut dst_buffer = new_buffer(&device, &vec![0.0f32; dst_el]);
+
+ set_params!(
+ encoder,
+ (
+ dst_el,
+ left_size,
+ src_dim_size,
+ right_size,
+ ids_size,
+ &embeddings_buffer,
+ &ids_buffer,
+ &mut dst_buffer
+ )
+ );
+
+ let width = std::cmp::min(pipeline.max_total_threads_per_threadgroup(), dst_el as u64);
+ let grid_size = MTLSize {
+ width: (dst_el as u64 + width - 1) / width,
+ height: 1,
+ depth: 1,
+ };
+
+ let thread_group_size = MTLSize {
+ width,
+ height: 1,
+ depth: 1,
+ };
+
+ println!("{width:?} - {:?}", grid_size);
+
+ encoder.dispatch_thread_groups(grid_size, thread_group_size);
+ encoder.end_encoding();
+ command_buffer.commit();
+ command_buffer.wait_until_completed();
+
+ dst_buffer.read_to_vec::<T>(dst_el)
+ }
+
+ #[test]
fn index_add() {
let device = Device::system_default().expect("no device found");
@@ -997,31 +1083,29 @@ mod tests {
let pipeline = device
.new_compute_pipeline_state_with_function(&function)
.unwrap();
- let options = MTLResourceOptions::StorageModeManaged;
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let encoder = command_buffer.new_compute_command_encoder();
- let ids_size = (index.len() * mem::size_of::<u32>()) as NSUInteger;
- let input_size = (left.len() * mem::size_of::<f32>()) as NSUInteger;
- let output_size = (right.len() * mem::size_of::<f32>()) as NSUInteger;
-
encoder.set_compute_pipeline_state(&pipeline);
- encoder.set_threadgroup_memory_length(0, output_size as NSUInteger);
-
- let index_buffer = device.new_buffer_with_data(void_ptr(&index), ids_size, options);
- let inputs_buffer = device.new_buffer_with_data(void_ptr(&left), input_size, options);
- let outputs_buffer = device.new_buffer_with_data(void_ptr(&right), output_size, options);
-
- encoder.set_buffer(0, Some(&index_buffer), 0);
- encoder.set_buffer(1, Some(&inputs_buffer), 0);
- encoder.set_buffer(2, Some(&outputs_buffer), 0);
- encoder.set_bytes(3, 4, void_ptr(&ids_dim_size));
- encoder.set_bytes(4, 4, void_ptr(&left_size));
- encoder.set_bytes(5, 4, void_ptr(&dst_dim_size));
- encoder.set_bytes(6, 4, void_ptr(&right_size));
+ let index_buffer = new_buffer(&device, &index);
+ let inputs_buffer = new_buffer(&device, &left);
+ let outputs_buffer = new_buffer(&device, &right);
+
+ set_params!(
+ encoder,
+ (
+ &index_buffer,
+ &inputs_buffer,
+ &outputs_buffer,
+ ids_dim_size,
+ left_size,
+ dst_dim_size,
+ right_size
+ )
+ );
let grid_size = MTLSize {
width: right.len() as NSUInteger,
@@ -1064,12 +1148,9 @@ mod tests {
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
+ let input = new_buffer(&device, v);
+
let options = MTLResourceOptions::StorageModeManaged;
- let input = device.new_buffer_with_data(
- v.as_ptr() as *const core::ffi::c_void,
- std::mem::size_of_val(v) as u64,
- options,
- );
let mut output =
device.new_buffer((out_length * core::mem::size_of::<T>()) as u64, options);
call_reduce_contiguous(
@@ -1098,13 +1179,8 @@ mod tests {
let kernels = Kernels::new();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
- let options = MTLResourceOptions::StorageModeManaged;
- let input = device.new_buffer_with_data(
- v.as_ptr() as *const core::ffi::c_void,
- std::mem::size_of_val(v) as u64,
- options,
- );
- let mut output = device.new_buffer(std::mem::size_of_val(v) as u64, options);
+ let input = new_buffer(&device, v);
+ let mut output = new_buffer(&device, v);
call_last_softmax(
&device,
command_buffer,