summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--README.md7
-rw-r--r--candle-core/benches/bench_main.rs7
-rw-r--r--candle-core/benches/benchmarks/affine.rs43
-rw-r--r--candle-core/benches/benchmarks/mod.rs2
-rw-r--r--candle-core/benches/benchmarks/where_cond.rs64
-rw-r--r--candle-core/src/metal_backend.rs3
-rw-r--r--candle-core/src/tensor.rs12
-rw-r--r--candle-core/tests/tensor_tests.rs16
-rw-r--r--candle-examples/build.rs6
-rw-r--r--candle-examples/examples/custom-ops/cuda_kernels.rs1
-rw-r--r--candle-examples/examples/phi/main.rs47
-rw-r--r--candle-examples/examples/repvgg/README.md6
-rw-r--r--candle-metal-kernels/src/affine.metal14
-rw-r--r--candle-metal-kernels/src/ternary.metal66
-rw-r--r--candle-nn/src/activation.rs1
-rw-r--r--candle-onnx/src/eval.rs6
-rw-r--r--candle-transformers/src/models/mod.rs1
-rw-r--r--candle-transformers/src/models/phi.rs363
18 files changed, 608 insertions, 57 deletions
diff --git a/README.md b/README.md
index 93cbccc4..14172742 100644
--- a/README.md
+++ b/README.md
@@ -66,7 +66,7 @@ We also provide a some command line based examples using state of the art models
- [Phi-1, Phi-1.5, and Phi-2](./candle-examples/examples/phi/): 1.3b and 2.7b general LLMs with performance on par with LLaMA-v2 7b.
- [StableLM-3B-4E1T](./candle-examples/examples/stable-lm/): a 3b general LLM
pre-trained on 1T tokens of English and code datasets.
-- [Minimal Mamba](./candle-examples/examples/minimal-mamba/): a minimal
+- [Minimal Mamba](./candle-examples/examples/mamba-minimal/): a minimal
implementation of the Mamba state space model.
- [Mistral7b-v0.1](./candle-examples/examples/mistral/): a 7b general LLM with
better performance than all publicly available 13b models as of 2023-09-28.
@@ -109,6 +109,9 @@ We also provide a some command line based examples using state of the art models
- [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained
using self-supervision (can be used for imagenet classification, depth
evaluation, segmentation).
+- [VGG](./candle-examples/examples/vgg/),
+ [RepVGG](./candle-examples/examples/repvgg): computer vision models.
+- [BLIP](./candle-examples/examples/blip/): image to text model, can be used to
- [BLIP](./candle-examples/examples/blip/): image to text model, can be used to
generate captions for an image.
- [Marian-MT](./candle-examples/examples/marian-mt/): neural machine translation
@@ -204,7 +207,7 @@ If you have an addition to this list, please submit a pull request.
- Image to text.
- BLIP.
- Computer Vision Models.
- - DINOv2, ConvMixer, EfficientNet, ResNet, ViT.
+ - DINOv2, ConvMixer, EfficientNet, ResNet, ViT, VGG, RepVGG.
- yolo-v3, yolo-v8.
- Segment-Anything Model (SAM).
- File formats: load models from safetensors, npz, ggml, or PyTorch files.
diff --git a/candle-core/benches/bench_main.rs b/candle-core/benches/bench_main.rs
index 8913df4f..162e3f2b 100644
--- a/candle-core/benches/bench_main.rs
+++ b/candle-core/benches/bench_main.rs
@@ -1,4 +1,9 @@
mod benchmarks;
use criterion::criterion_main;
-criterion_main!(benchmarks::matmul::benches, benchmarks::random::benches);
+criterion_main!(
+ benchmarks::affine::benches,
+ benchmarks::matmul::benches,
+ benchmarks::random::benches,
+ benchmarks::where_cond::benches
+);
diff --git a/candle-core/benches/benchmarks/affine.rs b/candle-core/benches/benchmarks/affine.rs
new file mode 100644
index 00000000..eded9f57
--- /dev/null
+++ b/candle-core/benches/benchmarks/affine.rs
@@ -0,0 +1,43 @@
+use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
+use candle_core::{DType, Device, Tensor};
+use criterion::{black_box, criterion_group, Criterion, Throughput};
+use std::time::Instant;
+
+fn run(a: &Tensor) {
+ a.affine(12.34, 56.78).unwrap();
+}
+
+fn run_affine_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
+ let b = 1;
+ let m = 1024;
+ let k = 1024;
+
+ let tensor = Tensor::zeros((b, m, k), dtype, &device).unwrap();
+
+ let flops = b * m * k * dtype.size_in_bytes();
+
+ let mut group = c.benchmark_group(device.bench_name(name));
+ group.throughput(Throughput::Bytes(flops as u64));
+ group.bench_function("iter", move |b| {
+ b.iter_custom(|iters| {
+ let start = Instant::now();
+ for _i in 0..iters {
+ run(black_box(&tensor));
+ }
+ device.sync().unwrap();
+ start.elapsed()
+ })
+ });
+ group.finish();
+}
+
+fn criterion_benchmark(c: &mut Criterion) {
+ let handler = BenchDeviceHandler::new().unwrap();
+ for device in handler.devices {
+ run_affine_benchmark(c, &device, DType::F32, "affine_f32");
+ run_affine_benchmark(c, &device, DType::F16, "affine_f16");
+ run_affine_benchmark(c, &device, DType::BF16, "affine_bf16");
+ }
+}
+
+criterion_group!(benches, criterion_benchmark);
diff --git a/candle-core/benches/benchmarks/mod.rs b/candle-core/benches/benchmarks/mod.rs
index eb20ea70..c45effee 100644
--- a/candle-core/benches/benchmarks/mod.rs
+++ b/candle-core/benches/benchmarks/mod.rs
@@ -1,5 +1,7 @@
+pub(crate) mod affine;
pub(crate) mod matmul;
pub(crate) mod random;
+pub(crate) mod where_cond;
use candle_core::{Device, Result};
diff --git a/candle-core/benches/benchmarks/where_cond.rs b/candle-core/benches/benchmarks/where_cond.rs
new file mode 100644
index 00000000..c517dcf5
--- /dev/null
+++ b/candle-core/benches/benchmarks/where_cond.rs
@@ -0,0 +1,64 @@
+use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
+use candle_core::{DType, Device, Tensor};
+use criterion::{black_box, criterion_group, Criterion, Throughput};
+use std::time::Instant;
+
+fn run(a: &Tensor, b: &Tensor, c: &Tensor) {
+ a.where_cond(b, c).unwrap();
+}
+
+const fn create_cond_arr<const N: usize>() -> [u8; N] {
+ let mut arr = [0u8; N];
+ let mut i = 0;
+ while i < N {
+ arr[i] = (i % 2) as u8;
+ i += 1;
+ }
+ arr
+}
+
+const B: usize = 1;
+const M: usize = 1024;
+const K: usize = 1024;
+const SIZE: usize = B * M * K;
+
+const DATA: [u8; SIZE] = create_cond_arr::<SIZE>();
+
+fn run_where_cond_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
+ let tensor = Tensor::from_slice(DATA.as_slice(), (B, M, K), &device).unwrap();
+ let on_true = Tensor::ones((B, M, K), dtype, &device).unwrap();
+ let on_false = Tensor::zeros((B, M, K), dtype, &device).unwrap();
+
+ let elements = B * M * K;
+ // E.g. 2 f32 tensors + 1 u8 tensor
+ let flops = (2 * elements * dtype.size_in_bytes()) + elements;
+
+ let mut group = c.benchmark_group(device.bench_name(name));
+ group.throughput(Throughput::Bytes(flops as u64));
+ group.bench_function("iter", move |b| {
+ b.iter_custom(|iters| {
+ let start = Instant::now();
+ for _i in 0..iters {
+ run(
+ black_box(&tensor),
+ black_box(&on_true),
+ black_box(&on_false),
+ );
+ }
+ device.sync().unwrap();
+ start.elapsed()
+ })
+ });
+ group.finish();
+}
+
+fn criterion_benchmark(c: &mut Criterion) {
+ let device = BenchDeviceHandler::new().unwrap();
+ for d in device.devices {
+ run_where_cond_benchmark(c, &d, DType::F32, "where_cond_f32");
+ run_where_cond_benchmark(c, &d, DType::BF16, "where_cond_bf16");
+ run_where_cond_benchmark(c, &d, DType::F16, "where_cond_f16");
+ }
+}
+
+criterion_group!(benches, criterion_benchmark);
diff --git a/candle-core/src/metal_backend.rs b/candle-core/src/metal_backend.rs
index 48250233..8a75bd7c 100644
--- a/candle-core/src/metal_backend.rs
+++ b/candle-core/src/metal_backend.rs
@@ -355,6 +355,7 @@ impl BackendStorage for MetalStorage {
let name = match self.dtype {
DType::F32 => "affine_f32",
DType::F16 => "affine_f16",
+ DType::BF16 => "affine_bf16",
dtype => crate::bail!("Metal contiguous affine {dtype:?} not implemented"),
};
candle_metal_kernels::call_affine(
@@ -373,6 +374,7 @@ impl BackendStorage for MetalStorage {
let name = match self.dtype {
DType::F32 => "affine_f32_strided",
DType::F16 => "affine_f16_strided",
+ DType::BF16 => "affine_bf16_strided",
dtype => crate::bail!("Metal strided affine {dtype:?} not implemented"),
};
candle_metal_kernels::call_affine_strided(
@@ -808,6 +810,7 @@ impl BackendStorage for MetalStorage {
}
let name = match (self.dtype, t.dtype()) {
(DType::U8, DType::F32) => "where_u8_f32",
+ (DType::U8, DType::BF16) => "where_u8_bf16",
(DType::U8, DType::F16) => "where_u8_f16",
(DType::U8, DType::I64) => "where_u8_i64",
(DType::U8, DType::U32) => "where_u8_u32",
diff --git a/candle-core/src/tensor.rs b/candle-core/src/tensor.rs
index 54f9fa2b..3100c6e8 100644
--- a/candle-core/src/tensor.rs
+++ b/candle-core/src/tensor.rs
@@ -2578,11 +2578,21 @@ impl Tensor {
}
/// Returns log(sum(exp(tensor), dim)).
- pub fn logsumexp<D: Dims>(&self, sum_dims: D) -> Result<Self> {
+ pub fn log_sum_exp<D: Dims>(&self, sum_dims: D) -> Result<Self> {
let exp = self.exp()?;
let sum = exp.sum(sum_dims)?;
sum.log()
}
+
+ /// Pointwise pow operation.
+ pub fn pow(&self, rhs: &Tensor) -> Result<Self> {
+ rhs.mul(&self.log()?)?.exp()
+ }
+
+ /// Broadcasting version of `pow`.
+ pub fn broadcast_pow(&self, rhs: &Tensor) -> Result<Self> {
+ rhs.broadcast_mul(&self.log()?)?.exp()
+ }
}
macro_rules! bin_trait {
diff --git a/candle-core/tests/tensor_tests.rs b/candle-core/tests/tensor_tests.rs
index e83fb55b..33bab1b6 100644
--- a/candle-core/tests/tensor_tests.rs
+++ b/candle-core/tests/tensor_tests.rs
@@ -1245,11 +1245,23 @@ fn assert_close(a: &Tensor, b: &Tensor, epsilon: f64) -> Result<()> {
}
#[test]
-fn logsumexp() -> Result<()> {
+fn log_sum_exp() -> Result<()> {
let input = Tensor::new(&[[1f64, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
- let output = input.logsumexp(D::Minus1)?;
+ let output = input.log_sum_exp(D::Minus1)?;
// The expectations obtained from pytorch.
let expected = Tensor::new(&[3.4076, 6.4076], &Device::Cpu)?;
assert_close(&output, &expected, 0.00001)?;
Ok(())
}
+
+#[test]
+fn pow() -> Result<()> {
+ let lhs = Tensor::new(&[[1f32, 2., 3.], [4., 5., 6.]], &Device::Cpu)?;
+ let rhs = (&lhs - 2.)?;
+ let res = lhs.pow(&rhs)?;
+ assert_eq!(
+ test_utils::to_vec2_round(&res, 4)?,
+ [[1.0, 1.0, 3.0], [16.0, 125.0, 1296.0001]]
+ );
+ Ok(())
+}
diff --git a/candle-examples/build.rs b/candle-examples/build.rs
index ba40aeb4..33497714 100644
--- a/candle-examples/build.rs
+++ b/candle-examples/build.rs
@@ -27,11 +27,5 @@ fn main() -> Result<()> {
bindings.write(kdir.rust_target).unwrap()
}
}
- #[cfg(not(feature = "cuda"))]
- {
- for kdir in KERNEL_DIRS.iter() {
- let _file = std::fs::File::create(kdir.rust_target)?;
- }
- }
Ok(())
}
diff --git a/candle-examples/examples/custom-ops/cuda_kernels.rs b/candle-examples/examples/custom-ops/cuda_kernels.rs
index c00b601b..e69de29b 100644
--- a/candle-examples/examples/custom-ops/cuda_kernels.rs
+++ b/candle-examples/examples/custom-ops/cuda_kernels.rs
@@ -1 +0,0 @@
-pub const LAYERNORM_KERNELS: &str = include_str!(concat!(env!("OUT_DIR"), "/layernorm_kernels.ptx"));
diff --git a/candle-examples/examples/phi/main.rs b/candle-examples/examples/phi/main.rs
index c529867b..ea99c706 100644
--- a/candle-examples/examples/phi/main.rs
+++ b/candle-examples/examples/phi/main.rs
@@ -8,6 +8,7 @@ use anyhow::{Error as E, Result};
use clap::{Parser, ValueEnum};
use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as MixFormer};
+use candle_transformers::models::phi::{Config as PhiConfig, Model as Phi};
use candle_transformers::models::quantized_mixformer::MixFormerSequentialForCausalLM as QMixFormer;
use candle::{DType, Device, Tensor};
@@ -18,6 +19,7 @@ use tokenizers::Tokenizer;
enum Model {
MixFormer(MixFormer),
+ Phi(Phi),
Quantized(QMixFormer),
}
@@ -84,6 +86,7 @@ impl TextGeneration {
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = match &mut self.model {
Model::MixFormer(m) => m.forward(&input)?,
+ Model::Phi(m) => m.forward(&input)?,
Model::Quantized(m) => m.forward(&input)?,
};
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
@@ -117,7 +120,7 @@ impl TextGeneration {
}
}
-#[derive(Clone, Copy, Debug, ValueEnum)]
+#[derive(Clone, Copy, Debug, ValueEnum, PartialEq, Eq)]
enum WhichModel {
#[value(name = "1")]
V1,
@@ -125,6 +128,9 @@ enum WhichModel {
V1_5,
#[value(name = "2")]
V2,
+ // TODO: Make this the default once it has been battle tested.
+ #[value(name = "2-new")]
+ V2New,
PuffinPhiV2,
PhiHermes,
}
@@ -169,7 +175,7 @@ struct Args {
#[arg(long)]
model_id: Option<String>,
- #[arg(long, default_value = "1.5")]
+ #[arg(long, default_value = "2")]
model: WhichModel,
#[arg(long)]
@@ -230,7 +236,7 @@ fn main() -> Result<()> {
match args.model {
WhichModel::V1 => "microsoft/phi-1".to_string(),
WhichModel::V1_5 => "microsoft/phi-1_5".to_string(),
- WhichModel::V2 => "microsoft/phi-2".to_string(),
+ WhichModel::V2 | WhichModel::V2New => "microsoft/phi-2".to_string(),
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
"lmz/candle-quantized-phi".to_string()
}
@@ -247,7 +253,8 @@ fn main() -> Result<()> {
match args.model {
WhichModel::V1 => "refs/pr/2".to_string(),
WhichModel::V1_5 => "refs/pr/18".to_string(),
- WhichModel::V2 | WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
+ WhichModel::V2 => "834565c23f9b28b96ccbeabe614dd906b6db551a".to_string(),
+ WhichModel::V2New | WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
"main".to_string()
}
}
@@ -258,7 +265,9 @@ fn main() -> Result<()> {
let tokenizer_filename = match args.tokenizer {
Some(file) => std::path::PathBuf::from(file),
None => match args.model {
- WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 => repo.get("tokenizer.json")?,
+ WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 | WhichModel::V2New => {
+ repo.get("tokenizer.json")?
+ }
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
repo.get("tokenizer-puffin-phi-v2.json")?
}
@@ -271,14 +280,14 @@ fn main() -> Result<()> {
match args.model {
WhichModel::V1 => vec![repo.get("model-v1-q4k.gguf")?],
WhichModel::V1_5 => vec![repo.get("model-q4k.gguf")?],
- WhichModel::V2 => vec![repo.get("model-v2-q4k.gguf")?],
+ WhichModel::V2 | WhichModel::V2New => vec![repo.get("model-v2-q4k.gguf")?],
WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2-q4k.gguf")?],
WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B-q4k.gguf")?],
}
} else {
match args.model {
WhichModel::V1 | WhichModel::V1_5 => vec![repo.get("model.safetensors")?],
- WhichModel::V2 => candle_examples::hub_load_safetensors(
+ WhichModel::V2 | WhichModel::V2New => candle_examples::hub_load_safetensors(
&repo,
"model.safetensors.index.json",
)?,
@@ -292,25 +301,35 @@ fn main() -> Result<()> {
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
- let config = match args.model {
+ let config = || match args.model {
WhichModel::V1 => Config::v1(),
WhichModel::V1_5 => Config::v1_5(),
- WhichModel::V2 => Config::v2(),
+ WhichModel::V2 | WhichModel::V2New => Config::v2(),
WhichModel::PuffinPhiV2 => Config::puffin_phi_v2(),
WhichModel::PhiHermes => Config::phi_hermes_1_3b(),
};
- let (model, device) = if args.quantized {
+ let (model, device) = if args.model == WhichModel::V2New {
+ let device = candle_examples::device(args.cpu)?;
+ let config_filename = repo.get("config.json")?;
+ let config = std::fs::read_to_string(config_filename)?;
+ let config: PhiConfig = serde_json::from_str(&config)?;
+ let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
+ let phi = Phi::new(&config, vb)?;
+ (Model::Phi(phi), device)
+ } else if args.quantized {
let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(&filenames[0])?;
+ let config = config();
let model = match args.model {
- WhichModel::V2 => QMixFormer::new_v2(&config, vb)?,
+ WhichModel::V2 | WhichModel::V2New => QMixFormer::new_v2(&config, vb)?,
_ => QMixFormer::new(&config, vb)?,
};
(Model::Quantized(model), Device::Cpu)
} else {
let device = candle_examples::device(args.cpu)?;
+ let config = config();
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
let model = match args.model {
- WhichModel::V2 => MixFormer::new_v2(&config, vb)?,
+ WhichModel::V2 | WhichModel::V2New => MixFormer::new_v2(&config, vb)?,
_ => MixFormer::new(&config, vb)?,
};
(Model::MixFormer(model), device)
@@ -393,6 +412,10 @@ fn mmlu<P: AsRef<std::path::Path>>(
m.clear_kv_cache();
m.forward(&input)?
}
+ Model::Phi(m) => {
+ m.clear_kv_cache();
+ m.forward(&input)?
+ }
Model::Quantized(m) => {
m.clear_kv_cache();
m.forward(&input)?
diff --git a/candle-examples/examples/repvgg/README.md b/candle-examples/examples/repvgg/README.md
index 2cb807c1..d24bcd6d 100644
--- a/candle-examples/examples/repvgg/README.md
+++ b/candle-examples/examples/repvgg/README.md
@@ -1,7 +1,9 @@
# candle-repvgg
-A candle implementation of inference using a pre-trained [repvgg](https://arxiv.org/abs/2101.03697).
-This uses a classification head trained on the ImageNet dataset and returns the
+[RepVGG: Making VGG-style ConvNets Great Again](https://arxiv.org/abs/2101.03697).
+
+This candle implementation uses a pre-trained RepVGG network for inference. The
+classification head has been trained on the ImageNet dataset and returns the
probabilities for the top-5 classes.
## Running an example
diff --git a/candle-metal-kernels/src/affine.metal b/candle-metal-kernels/src/affine.metal
index 3d8e7f0d..a4484998 100644
--- a/candle-metal-kernels/src/affine.metal
+++ b/candle-metal-kernels/src/affine.metal
@@ -17,19 +17,19 @@ METAL_FUNC uint get_strided_index(
using namespace metal;
-#define AFFINE(FN_NAME, TYPENAME) \
+#define AFFINE(FN_NAME, T) \
kernel void FN_NAME( \
constant size_t &dim, \
constant float &mul, \
constant float &add, \
- device const TYPENAME *input, \
- device TYPENAME *output, \
+ device const T *input, \
+ device T *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
- output[id] = TYPENAME(float(input[id]) * mul + add); \
+ output[id] = T(fma(float(input[id]), mul, add)); \
} \
kernel void FN_NAME##_strided( \
constant size_t &dim, \
@@ -38,14 +38,14 @@ kernel void FN_NAME##_strided( \
constant size_t *strides, \
constant float &mul, \
constant float &add, \
- device const TYPENAME *input, \
- device TYPENAME *output, \
+ device const T *input, \
+ device T *output, \
uint id [[ thread_position_in_grid ]] \
) { \
if (id >= dim) { \
return; \
} \
- output[id] = TYPENAME(float(input[get_strided_index(id, num_dims, dims, strides)]) * mul + add); \
+ output[id] = T(fma(float(input[get_strided_index(id, num_dims, dims, strides)]), mul, add)); \
}
#define POWF(FN_NAME, TYPENAME) \
diff --git a/candle-metal-kernels/src/ternary.metal b/candle-metal-kernels/src/ternary.metal
index 40b4bcf4..7b3b8ca9 100644
--- a/candle-metal-kernels/src/ternary.metal
+++ b/candle-metal-kernels/src/ternary.metal
@@ -17,29 +17,45 @@ METAL_FUNC uint get_strided_index(
return strided_i;
}
+template<typename T, typename ID>
+METAL_FUNC void where_cond(
+ constant size_t &numel,
+ constant size_t &num_dims,
+ constant size_t *dims,
+ constant size_t *strides,
+ constant size_t *strides_t,
+ constant size_t *strides_f,
+ device const ID *ids,
+ device const T *t,
+ device const T *f,
+ device T *out,
+ uint i [[ thread_position_in_grid ]]
+) {
+ if (i >= numel){
+ return;
+ }
+ uint strided_i = get_strided_index(i, num_dims, dims, strides);
+ uint strided_i_t = get_strided_index(i, num_dims, dims, strides_t);
+ uint strided_i_f = get_strided_index(i, num_dims, dims, strides_f);
+ out[i] = ids[strided_i] ? t[strided_i_t] : f[strided_i_f];
+}
-#define WHERE_OP(TYPENAME, ID_TYPENAME, FN_NAME) \
-kernel void FN_NAME( \
- constant size_t &numel, \
- constant size_t &num_dims, \
- constant size_t *dims, \
- constant size_t *strides, \
- constant size_t *strides_t, \
- constant size_t *strides_f, \
- device const ID_TYPENAME *ids, \
- device const TYPENAME *t, \
- device const TYPENAME *f, \
- device TYPENAME *out ,\
- uint i [[ thread_position_in_grid ]] \
-) { \
- if (i >= numel){ \
- return; \
- } \
- uint strided_i = get_strided_index(i, num_dims, dims, strides); \
- uint strided_i_t = get_strided_index(i, num_dims, dims, strides_t); \
- uint strided_i_f = get_strided_index(i, num_dims, dims, strides_f); \
- out[i] = ids[strided_i] ? t[strided_i_t] : f[strided_i_f]; \
-} \
+#define WHERE_OP(T, ID, FN_NAME) \
+kernel void FN_NAME( \
+ constant size_t &numel, \
+ constant size_t &num_dims, \
+ constant size_t *dims, \
+ constant size_t *strides, \
+ constant size_t *strides_t, \
+ constant size_t *strides_f, \
+ device const ID *ids, \
+ device const T *t, \
+ device const T *f, \
+ device T *out, \
+ uint i [[ thread_position_in_grid ]] \
+) { \
+ where_cond<T, ID>(numel, num_dims, dims, strides, strides_t, strides_f, ids, t, f, out, i); \
+} \
// WHERE_OP(float, int64_t, where_i64_f32)
// WHERE_OP(double, int64_t, where_i64_f64)
@@ -54,10 +70,14 @@ kernel void FN_NAME( \
// WHERE_OP(int64_t, uint32_t, where_u32_i64)
WHERE_OP(float, uint8_t, where_u8_f32)
-// WHERE_OP(double, uint8_t, where_u8_f64)
+WHERE_OP(half, uint8_t, where_u8_f16)
WHERE_OP(uint8_t, uint8_t, where_u8_u8)
WHERE_OP(uint32_t, uint8_t, where_u8_u32)
#if __METAL_VERSION__ >= 220
WHERE_OP(int64_t, uint8_t, where_u8_i64)
#endif
+
+#if defined(__HAVE_BFLOAT__)
+WHERE_OP(bfloat, uint8_t, where_u8_bf16)
+#endif \ No newline at end of file
diff --git a/candle-nn/src/activation.rs b/candle-nn/src/activation.rs
index 80b750ed..e00463f0 100644
--- a/candle-nn/src/activation.rs
+++ b/candle-nn/src/activation.rs
@@ -6,6 +6,7 @@ use serde::Deserialize;
pub enum Activation {
#[default]
Gelu,
+ #[serde(alias = "gelu_new")]
NewGelu,
Relu,
Relu2,
diff --git a/candle-onnx/src/eval.rs b/candle-onnx/src/eval.rs
index 684776c2..c0ad8668 100644
--- a/candle-onnx/src/eval.rs
+++ b/candle-onnx/src/eval.rs
@@ -254,6 +254,12 @@ pub fn simple_eval(
let output = input0.broadcast_div(input1)?;
values.insert(node.output[0].clone(), output);
}
+ "Pow" => {
+ let input0 = get(&node.input[0])?;
+ let input1 = get(&node.input[1])?;
+ let output = input0.broadcast_pow(input1)?;
+ values.insert(node.output[0].clone(), output);
+ }
"Equal" => {
let input0 = get(&node.input[0])?;
let input1 = get(&node.input[1])?;
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index a60b5a06..9af6df69 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -17,6 +17,7 @@ pub mod mixformer;
pub mod mixtral;
pub mod mpt;
pub mod persimmon;
+pub mod phi;
pub mod quantized_blip;
pub mod quantized_blip_text;
pub mod quantized_llama;
diff --git a/candle-transformers/src/models/phi.rs b/candle-transformers/src/models/phi.rs
new file mode 100644
index 00000000..8bf357e7
--- /dev/null
+++ b/candle-transformers/src/models/phi.rs
@@ -0,0 +1,363 @@
+use crate::models::with_tracing::{layer_norm, linear, Embedding, LayerNorm, Linear};
+/// Phi model.
+/// https://huggingface.co/microsoft/phi-2
+/// There is an alternative implementation of the phi model in mixformers.rs.
+/// This corresponds to the model update made with the following commit:
+/// https://huggingface.co/microsoft/phi-2/commit/cb2f4533604d8b67de604e7df03bfe6f3ca22869
+use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
+use candle_nn::{Activation, VarBuilder};
+use serde::Deserialize;
+
+// https://huggingface.co/microsoft/phi-2/blob/main/configuration_phi.py
+#[derive(Debug, Clone, PartialEq, Deserialize)]
+pub struct Config {
+ pub(crate) vocab_size: usize,
+ pub(crate) hidden_size: usize,
+ pub(crate) intermediate_size: usize,
+ pub(crate) num_hidden_layers: usize,
+ pub(crate) num_attention_heads: usize,
+ pub(crate) num_key_value_heads: Option<usize>,
+ pub(crate) hidden_act: Activation,
+ pub(crate) max_position_embeddings: usize,
+ pub(crate) layer_norm_eps: f64,
+ pub(crate) tie_word_embeddings: bool,
+ pub(crate) rope_theta: f32,
+ pub(crate) partial_rotary_factor: f64,
+ pub(crate) qk_layernorm: bool,
+}
+
+impl Config {
+ fn num_key_value_heads(&self) -> usize {
+ self.num_key_value_heads.unwrap_or(self.num_attention_heads)
+ }
+
+ fn head_dim(&self) -> usize {
+ self.hidden_size / self.num_attention_heads
+ }
+}
+
+#[derive(Debug, Clone)]
+struct RotaryEmbedding {
+ dim: usize,
+ sin: Tensor,
+ cos: Tensor,
+}
+
+impl RotaryEmbedding {
+ fn new(cfg: &Config, dev: &Device) -> Result<Self> {
+ let dim = (cfg.partial_rotary_factor * cfg.head_dim() as f64) as usize;
+ let inv_freq: Vec<_> = (0..dim)
+ .step_by(2)
+ .map(|i| 1f32 / cfg.rope_theta.powf(i as f32 / dim as f32))
+ .collect();
+ let inv_freq_len = inv_freq.len();
+ let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?;
+ let t = Tensor::arange(0u32, cfg.max_position_embeddings as u32, dev)?
+ .to_dtype(DType::F32)?
+ .reshape((cfg.max_position_embeddings, 1))?;
+ let freqs = t.matmul(&inv_freq)?;
+ let emb = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
+ Ok(Self {
+ dim,
+ sin: emb.sin()?,
+ cos: emb.cos()?,
+ })
+ }
+
+ fn apply_rotary_emb(&self, xs: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
+ let (_b_size, _num_heads, seq_len, _headdim) = xs.dims4()?;
+ let xs_rot = xs.i((.., .., .., ..self.dim))?;
+ let xs_pass = xs.i((.., .., .., self.dim..))?;
+ let xs12 = xs_rot.chunk(2, D::Minus1)?;
+ let (xs1, xs2) = (&xs12[0], &xs12[1]);
+ let c = self.cos.narrow(0, seqlen_offset, seq_len)?;
+ let s = self.sin.narrow(0, seqlen_offset, seq_len)?;
+ let rotate_half = Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)?;
+ let xs_rot = (xs_rot.broadcast_mul(&c)? + rotate_half.broadcast_mul(&s)?)?;
+ Tensor::cat(&[&xs_rot, &xs_pass], D::Minus1)
+ }
+}
+
+#[derive(Debug, Clone)]
+#[allow(clippy::upper_case_acronyms)]
+struct MLP {
+ fc1: Linear,
+ fc2: Linear,
+ act: Activation,
+}
+
+impl MLP {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let fc1 = linear(cfg.hidden_size, cfg.intermediate_size, vb.pp("fc1"))?;
+ let fc2 = linear(cfg.intermediate_size, cfg.hidden_size, vb.pp("fc2"))?;
+ Ok(Self {
+ fc1,
+ fc2,
+ // This does not match the mixformers implementation where Gelu is used rather than
+ // GeluNew.
+ act: cfg.hidden_act,
+ })
+ }
+}
+
+impl Module for MLP {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2)
+ }
+}
+
+#[derive(Clone)]
+struct Attention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ dense: Linear,
+ kv_cache: Option<(Tensor, Tensor)>,
+ q_layernorm: Option<LayerNorm>,
+ k_layernorm: Option<LayerNorm>,
+ rotary_emb: RotaryEmbedding,
+ softmax_scale: f64,
+ num_heads: usize,
+ num_kv_heads: usize,
+ head_dim: usize,
+ span: tracing::Span,
+}
+
+fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
+ let mask: Vec<_> = (0..size)
+ .flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
+ .collect();
+ Tensor::from_slice(&mask, (size, size), device)
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
+ let shape = mask.shape();
+ let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
+ let m = mask.where_cond(&on_true, on_false)?;
+ Ok(m)
+}
+
+impl Attention {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let num_heads = cfg.num_attention_heads;
+ let num_kv_heads = cfg.num_key_value_heads();
+ let head_dim = cfg.head_dim();
+ let q_proj = linear(cfg.hidden_size, num_heads * head_dim, vb.pp("q_proj"))?;
+ let k_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("k_proj"))?;
+ let v_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("v_proj"))?;
+ let dense = linear(num_heads * head_dim, cfg.hidden_size, vb.pp("dense"))?;
+ // Alternative rope scalings are not supported.
+ let rotary_emb = RotaryEmbedding::new(cfg, vb.device())?;
+ let (q_layernorm, k_layernorm) = if cfg.qk_layernorm {
+ let q_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("q_layernorm"))?;
+ let k_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("k_layernorm"))?;
+ (Some(q_layernorm), Some(k_layernorm))
+ } else {
+ (None, None)
+ };
+ let softmax_scale = 1f64 / (head_dim as f64).sqrt();
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ dense,
+ kv_cache: None,
+ q_layernorm,
+ k_layernorm,
+ rotary_emb,
+ softmax_scale,
+ num_heads,
+ num_kv_heads,
+ head_dim,
+ span: tracing::span!(tracing::Level::TRACE, "attention"),
+ })
+ }
+
+ fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
+ let n_rep = self.num_heads / self.num_kv_heads;
+ if n_rep == 1 {
+ Ok(xs)
+ } else {
+ let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
+ xs.unsqueeze(2)?
+ .expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
+ .reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
+ }
+ }
+
+ fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let (b_size, seq_len, _n_embd) = xs.dims3()?;
+ let query_states = self.q_proj.forward(xs)?;
+ let key_states = self.k_proj.forward(xs)?;
+ let value_states = self.v_proj.forward(xs)?;
+
+ let query_states = match &self.q_layernorm {
+ None => query_states,
+ Some(ln) => query_states.apply(ln)?,
+ };
+ let key_states = match &self.k_layernorm {
+ None => key_states,
+ Some(ln) => key_states.apply(ln)?,
+ };
+
+ let query_states = query_states
+ .reshape((b_size, seq_len, self.num_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let key_states = key_states
+ .reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let value_states = value_states
+ .reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+
+ // Rotary embeddings.
+ let seqlen_offset = match &self.kv_cache {
+ None => 0,
+ Some((prev_k, _)) => prev_k.dim(2)?,
+ };
+ let query_states = self
+ .rotary_emb
+ .apply_rotary_emb(&query_states, seqlen_offset)?;
+ let key_states = self
+ .rotary_emb
+ .apply_rotary_emb(&key_states, seqlen_offset)?;
+
+ // KV cache.
+ let (key_states, value_states) = match &self.kv_cache {
+ None => (key_states, value_states),
+ Some((prev_k, prev_v)) => {
+ let k = Tensor::cat(&[prev_k, &key_states], 2)?;
+ let v = Tensor::cat(&[prev_v, &value_states], 2)?;
+ (k, v)
+ }
+ };
+ self.kv_cache = Some((key_states.clone(), value_states.clone()));
+
+ // Repeat kv.
+ let key_states = self.repeat_kv(key_states)?.contiguous()?;
+ let value_states = self.repeat_kv(value_states)?.contiguous()?;
+
+ let attn_weights = (query_states
+ .to_dtype(DType::F32)?
+ .contiguous()?
+ .matmul(&key_states.to_dtype(DType::F32)?.t()?)?
+ * self.softmax_scale)?;
+ let attn_weights = match mask {
+ None => attn_weights,
+ Some(mask) => masked_fill(
+ &attn_weights,
+ &mask.broadcast_left((b_size, self.num_heads))?,
+ f32::NEG_INFINITY,
+ )?,
+ };
+ let attn_weights =
+ candle_nn::ops::softmax_last_dim(&attn_weights)?.to_dtype(value_states.dtype())?;
+ let attn_output = attn_weights.matmul(&value_states)?;
+ let attn_output = attn_output
+ .transpose(1, 2)?
+ .reshape((b_size, seq_len, ()))?;
+ attn_output.apply(&self.dense)
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.kv_cache = None
+ }
+}
+
+#[derive(Clone)]
+struct DecoderLayer {
+ self_attn: Attention,
+ mlp: MLP,
+ input_layernorm: LayerNorm,
+ span: tracing::Span,
+}
+
+impl DecoderLayer {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let self_attn = Attention::new(cfg, vb.pp("self_attn"))?;
+ let mlp = MLP::new(cfg, vb.pp("mlp"))?;
+ let input_layernorm = layer_norm(
+ cfg.hidden_size,
+ cfg.layer_norm_eps,
+ vb.pp("input_layernorm"),
+ )?;
+ Ok(Self {
+ self_attn,
+ mlp,
+ input_layernorm,
+ span: tracing::span!(tracing::Level::TRACE, "block"),
+ })
+ }
+
+ fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let residual = xs;
+ let xs = xs.apply(&self.input_layernorm)?;
+ let attn_outputs = self.self_attn.forward(&xs, mask)?;
+ let feed_forward_hidden_states = self.mlp.forward(&xs)?;
+ attn_outputs + feed_forward_hidden_states + residual
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.self_attn.clear_kv_cache()
+ }
+}
+
+#[derive(Clone)]
+pub struct Model {
+ embed_tokens: Embedding,
+ layers: Vec<DecoderLayer>,
+ final_layernorm: LayerNorm,
+ lm_head: Linear,
+ span: tracing::Span,
+}
+
+impl Model {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let vb_m = vb.pp("model");
+ let embed_tokens =
+ Embedding::new(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
+ let final_layernorm = layer_norm(
+ cfg.hidden_size,
+ cfg.layer_norm_eps,
+ vb_m.pp("final_layernorm"),
+ )?;
+ let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
+ let vb_m = vb_m.pp("layers");
+ for layer_idx in 0..cfg.num_hidden_layers {
+ let layer = DecoderLayer::new(cfg, vb_m.pp(layer_idx))?;
+ layers.push(layer)
+ }
+ let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
+ Ok(Self {
+ embed_tokens,
+ layers,
+ final_layernorm,
+ lm_head,
+ span: tracing::span!(tracing::Level::TRACE, "model"),
+ })
+ }
+
+ pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let (_b_size, seq_len) = xs.dims2()?;
+ let mut xs = xs.apply(&self.embed_tokens)?;
+ let mask = if seq_len <= 1 {
+ None
+ } else {
+ Some(get_mask(seq_len, xs.device())?)
+ };
+ for layer in self.layers.iter_mut() {
+ xs = layer.forward(&xs, mask.as_ref())?;
+ }
+ xs.apply(&self.final_layernorm)?
+ .narrow(1, seq_len - 1, 1)?
+ .apply(&self.lm_head)?
+ .squeeze(1)
+ }
+
+ pub fn clear_kv_cache(&mut self) {
+ self.layers.iter_mut().for_each(|b| b.clear_kv_cache())
+ }
+}