summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--candle-examples/examples/moondream/main.rs28
-rw-r--r--candle-transformers/src/models/moondream.rs28
2 files changed, 40 insertions, 16 deletions
diff --git a/candle-examples/examples/moondream/main.rs b/candle-examples/examples/moondream/main.rs
index 2ec04256..3e0f6d57 100644
--- a/candle-examples/examples/moondream/main.rs
+++ b/candle-examples/examples/moondream/main.rs
@@ -155,6 +155,18 @@ struct Args {
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
+
+ #[arg(long, default_value = "vikhyatk/moondream2")]
+ model_id: String,
+
+ #[arg(long, default_value = "main")]
+ revision: String,
+
+ #[arg(long)]
+ model_file: Option<String>,
+
+ #[arg(long)]
+ tokenizer_file: Option<String>,
}
/// Loads an image from disk using the image crate, this returns a tensor with shape
@@ -204,9 +216,19 @@ async fn main() -> anyhow::Result<()> {
let start = std::time::Instant::now();
let api = hf_hub::api::tokio::Api::new()?;
- let repo = api.model("vikhyatk/moondream2".to_string());
- let model_file = repo.get("model.safetensors").await?;
- let tokenizer = repo.get("tokenizer.json").await?;
+ let repo = api.repo(hf_hub::Repo::with_revision(
+ args.model_id,
+ hf_hub::RepoType::Model,
+ args.revision,
+ ));
+ let model_file = match args.model_file {
+ Some(m) => m.into(),
+ None => repo.get("model.safetensors").await?,
+ };
+ let tokenizer = match args.tokenizer_file {
+ Some(m) => m.into(),
+ None => repo.get("tokenizer.json").await?,
+ };
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
diff --git a/candle-transformers/src/models/moondream.rs b/candle-transformers/src/models/moondream.rs
index 1172bf71..c36052c6 100644
--- a/candle-transformers/src/models/moondream.rs
+++ b/candle-transformers/src/models/moondream.rs
@@ -19,11 +19,8 @@ impl Config {
fn scaled_dot_product_attention(q: &Tensor, k: &Tensor, v: &Tensor) -> Result<Tensor> {
let dim = q.dim(D::Minus1)?;
let scale_factor = 1.0 / (dim as f64).sqrt();
- let k = k.transpose(D::Minus2, D::Minus1)?.contiguous()?;
- let mut attn_weights = (q.contiguous()?.matmul(&k)? * scale_factor)?;
- attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?.contiguous()?;
- let attn_weights = attn_weights.matmul(&v.contiguous()?)?;
- Ok(attn_weights)
+ let attn_weights = (q.matmul(&k.t()?)? * scale_factor)?;
+ candle_nn::ops::softmax_last_dim(&attn_weights)?.matmul(v)
}
#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
@@ -101,10 +98,15 @@ impl Module for Attention {
.apply(&self.qkv)?
.reshape((b, n, 3, self.num_heads, self.head_dim))?
.permute((2, 0, 3, 1, 4))?;
- let (q, k, v) = (qkv.i(0)?, qkv.i(1)?, qkv.i(2)?);
- let attn_weights = scaled_dot_product_attention(&q, &k, &v)?;
- let attn_weights = attn_weights.transpose(1, 2)?.reshape((b, n, c))?;
- attn_weights.apply(&self.proj)
+ let (q, k, v) = (
+ qkv.i(0)?.contiguous()?,
+ qkv.i(1)?.contiguous()?,
+ qkv.i(2)?.contiguous()?,
+ );
+ scaled_dot_product_attention(&q, &k, &v)?
+ .transpose(1, 2)?
+ .reshape((b, n, c))?
+ .apply(&self.proj)
}
}
@@ -275,11 +277,11 @@ impl Module for VisionEncoder {
let (p1, p2) = (14, 14);
let h = hp1 / p1;
let w = wp2 / p2;
- let xs = xs
- .reshape((b, c, h, p1, h, p2))?
+ xs.reshape((b, c, h, p1, h, p2))?
.permute((0, 2, 4, 1, 3, 5))?
- .reshape((b, h * w, c * p1 * p2))?;
- xs.apply(&self.encoder)?.apply(&self.projection)
+ .reshape((b, h * w, c * p1 * p2))?
+ .apply(&self.encoder)?
+ .apply(&self.projection)
}
}