summaryrefslogtreecommitdiff
path: root/candle-core/src/cuda_backend.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-core/src/cuda_backend.rs')
-rw-r--r--candle-core/src/cuda_backend.rs84
1 files changed, 80 insertions, 4 deletions
diff --git a/candle-core/src/cuda_backend.rs b/candle-core/src/cuda_backend.rs
index 6129e100..90d3ee6d 100644
--- a/candle-core/src/cuda_backend.rs
+++ b/candle-core/src/cuda_backend.rs
@@ -960,6 +960,64 @@ impl<'a> Map2 for Conv2D<'a> {
}
}
+enum PoolOp {
+ Max,
+ Avg,
+}
+
+struct Pool2D {
+ w_k: usize,
+ h_k: usize,
+ w_stride: usize,
+ h_stride: usize,
+ op: PoolOp,
+}
+
+impl Map1 for Pool2D {
+ fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
+ &self,
+ inp: &CudaSlice<T>,
+ dev: &CudaDevice,
+ inp_l: &Layout,
+ ) -> Result<CudaSlice<T>> {
+ // Kernel shape: (c_out, c_in_k, w_k, h_k)
+ let inp = &inp.slice(inp_l.start_offset()..);
+ let shape = inp_l.shape();
+ let dims = shape.dims();
+ let ds = if dims.len() == 4 {
+ [dims, inp_l.stride()].concat()
+ } else {
+ panic!("unexpected input shape for conv1d {dims:?}")
+ };
+ let el = shape.elem_count();
+ let out_w = (dims[2] - self.w_k) / self.w_stride + 1;
+ let out_h = (dims[3] - self.h_k) / self.h_stride + 1;
+ let dst_el = out_w * out_h * dims[0] * dims[1];
+ let cfg = LaunchConfig::for_num_elems(dst_el as u32);
+ let kname = match self.op {
+ PoolOp::Max => "max_pool2d",
+ PoolOp::Avg => "avg_pool2d",
+ };
+ let func = dev.get_or_load_func(&kernel_name::<T>(kname), kernels::CONV)?;
+ // SAFETY: Set later by running the kernel.
+ let out = unsafe { dev.alloc::<T>(dst_el) }.w()?;
+ let ds = dev.htod_copy(ds).w()?;
+ let params = (
+ el,
+ self.w_k,
+ self.h_k,
+ self.w_stride,
+ self.h_stride,
+ &ds,
+ inp,
+ &out,
+ );
+ // SAFETY: ffi.
+ unsafe { func.launch(cfg, params) }.w()?;
+ Ok(out)
+ }
+}
+
struct WhereCond<'a>(&'a CudaStorage, &'a Layout);
impl<'a> Map2 for WhereCond<'a> {
fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>(
@@ -1429,12 +1487,30 @@ impl BackendStorage for CudaStorage {
Ok(Self { slice, device })
}
- fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
- todo!()
+ fn avg_pool2d(&self, l: &Layout, k: (usize, usize), stride: (usize, usize)) -> Result<Self> {
+ let device = self.device().clone();
+ let slice = Pool2D {
+ w_k: k.0,
+ h_k: k.1,
+ w_stride: stride.0,
+ h_stride: stride.1,
+ op: PoolOp::Avg,
+ }
+ .map(&self.slice, &device, l)?;
+ Ok(Self { slice, device })
}
- fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
- todo!()
+ fn max_pool2d(&self, l: &Layout, k: (usize, usize), stride: (usize, usize)) -> Result<Self> {
+ let device = self.device().clone();
+ let slice = Pool2D {
+ w_k: k.0,
+ h_k: k.1,
+ w_stride: stride.0,
+ h_stride: stride.1,
+ op: PoolOp::Max,
+ }
+ .map(&self.slice, &device, l)?;
+ Ok(Self { slice, device })
}
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self> {