summaryrefslogtreecommitdiff
path: root/candle-core
diff options
context:
space:
mode:
Diffstat (limited to 'candle-core')
-rw-r--r--candle-core/benches/benchmarks/affine.rs2
-rw-r--r--candle-core/benches/benchmarks/qmatmul.rs4
-rw-r--r--candle-core/benches/benchmarks/unary.rs2
-rw-r--r--candle-core/benches/benchmarks/where_cond.rs6
-rw-r--r--candle-core/src/tensor.rs6
5 files changed, 10 insertions, 10 deletions
diff --git a/candle-core/benches/benchmarks/affine.rs b/candle-core/benches/benchmarks/affine.rs
index eded9f57..c1004c6c 100644
--- a/candle-core/benches/benchmarks/affine.rs
+++ b/candle-core/benches/benchmarks/affine.rs
@@ -12,7 +12,7 @@ fn run_affine_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name:
let m = 1024;
let k = 1024;
- let tensor = Tensor::zeros((b, m, k), dtype, &device).unwrap();
+ let tensor = Tensor::zeros((b, m, k), dtype, device).unwrap();
let flops = b * m * k * dtype.size_in_bytes();
diff --git a/candle-core/benches/benchmarks/qmatmul.rs b/candle-core/benches/benchmarks/qmatmul.rs
index ccb136ac..4d34588b 100644
--- a/candle-core/benches/benchmarks/qmatmul.rs
+++ b/candle-core/benches/benchmarks/qmatmul.rs
@@ -7,7 +7,7 @@ use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(matmul: &QMatMul, x: &Tensor) {
- matmul.forward(&x).unwrap();
+ matmul.forward(x).unwrap();
}
fn run_bench(c: &mut Criterion, device: &Device, dtype: GgmlDType) {
@@ -50,7 +50,7 @@ fn run_bench(c: &mut Criterion, device: &Device, dtype: GgmlDType) {
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
- for dtype in vec![
+ for dtype in [
GgmlDType::F32,
GgmlDType::F16,
GgmlDType::Q4_0,
diff --git a/candle-core/benches/benchmarks/unary.rs b/candle-core/benches/benchmarks/unary.rs
index a8e0d025..9efd7509 100644
--- a/candle-core/benches/benchmarks/unary.rs
+++ b/candle-core/benches/benchmarks/unary.rs
@@ -12,7 +12,7 @@ fn run_unary_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &
let m = 1024;
let k = 1024;
- let tensor = Tensor::arange(0.0f32, (b * m * k) as f32, &device)
+ let tensor = Tensor::arange(0.0f32, (b * m * k) as f32, device)
.unwrap()
.to_dtype(dtype)
.unwrap()
diff --git a/candle-core/benches/benchmarks/where_cond.rs b/candle-core/benches/benchmarks/where_cond.rs
index c517dcf5..0e91f656 100644
--- a/candle-core/benches/benchmarks/where_cond.rs
+++ b/candle-core/benches/benchmarks/where_cond.rs
@@ -25,9 +25,9 @@ const SIZE: usize = B * M * K;
const DATA: [u8; SIZE] = create_cond_arr::<SIZE>();
fn run_where_cond_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
- let tensor = Tensor::from_slice(DATA.as_slice(), (B, M, K), &device).unwrap();
- let on_true = Tensor::ones((B, M, K), dtype, &device).unwrap();
- let on_false = Tensor::zeros((B, M, K), dtype, &device).unwrap();
+ let tensor = Tensor::from_slice(DATA.as_slice(), (B, M, K), device).unwrap();
+ let on_true = Tensor::ones((B, M, K), dtype, device).unwrap();
+ let on_false = Tensor::zeros((B, M, K), dtype, device).unwrap();
let elements = B * M * K;
// E.g. 2 f32 tensors + 1 u8 tensor
diff --git a/candle-core/src/tensor.rs b/candle-core/src/tensor.rs
index dd1b44b0..82532f20 100644
--- a/candle-core/src/tensor.rs
+++ b/candle-core/src/tensor.rs
@@ -590,9 +590,9 @@ impl Tensor {
///
/// * `args` - A slice of 1D tensors.
/// * `xy_indexing` - Whether to use xy indexing or ij indexing. If xy is selected, the
- /// first dimension corresponds to the cardinality of the second input and the second
- /// dimension corresponds to the cardinality of the first input. If ij is selected, the
- /// dimensions are in the same order as the cardinality of the inputs.
+ /// first dimension corresponds to the cardinality of the second input and the second
+ /// dimension corresponds to the cardinality of the first input. If ij is selected, the
+ /// dimensions are in the same order as the cardinality of the inputs.
///
/// # Examples
///