summaryrefslogtreecommitdiff
path: root/candle-examples/examples/bert/main.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/bert/main.rs')
-rw-r--r--candle-examples/examples/bert/main.rs8
1 files changed, 4 insertions, 4 deletions
diff --git a/candle-examples/examples/bert/main.rs b/candle-examples/examples/bert/main.rs
index 1c3c429b..d7df5ae3 100644
--- a/candle-examples/examples/bert/main.rs
+++ b/candle-examples/examples/bert/main.rs
@@ -604,16 +604,16 @@ fn main() -> Result<()> {
println!("generated embeddings {:?}", embeddings.shape());
// Apply some avg-pooling by taking the mean embedding value for all tokens (including padding)
let (_n_sentence, n_tokens, _hidden_size) = embeddings.shape().r3()?;
- let embeddings = (embeddings.sum(&[1])? / (n_tokens as f64))?.squeeze(1)?;
+ let embeddings = (embeddings.sum_keepdim(&[1])? / (n_tokens as f64))?.squeeze(1)?;
println!("pooled embeddings {:?}", embeddings.shape());
let mut similarities = vec![];
for i in 0..n_sentences {
let e_i = embeddings.get(i)?;
for j in (i + 1)..n_sentences {
let e_j = embeddings.get(j)?;
- let sum_ij = (&e_i * &e_j)?.sum_all()?.reshape(())?.to_scalar::<f32>()?;
- let sum_i2 = (&e_i * &e_i)?.sum_all()?.reshape(())?.to_scalar::<f32>()?;
- let sum_j2 = (&e_j * &e_j)?.sum_all()?.reshape(())?.to_scalar::<f32>()?;
+ let sum_ij = (&e_i * &e_j)?.sum_all()?.to_scalar::<f32>()?;
+ let sum_i2 = (&e_i * &e_i)?.sum_all()?.to_scalar::<f32>()?;
+ let sum_j2 = (&e_j * &e_j)?.sum_all()?.to_scalar::<f32>()?;
let cosine_similarity = sum_ij / (sum_i2 * sum_j2).sqrt();
similarities.push((cosine_similarity, i, j))
}