summaryrefslogtreecommitdiff
path: root/candle-examples/examples/llama2-c/main.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/llama2-c/main.rs')
-rw-r--r--candle-examples/examples/llama2-c/main.rs131
1 files changed, 74 insertions, 57 deletions
diff --git a/candle-examples/examples/llama2-c/main.rs b/candle-examples/examples/llama2-c/main.rs
index 2e762f98..9b6d1316 100644
--- a/candle-examples/examples/llama2-c/main.rs
+++ b/candle-examples/examples/llama2-c/main.rs
@@ -13,6 +13,7 @@ use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use candle::{DType, Device, Error, IndexOp, Layout, Shape, Tensor};
use candle_nn::{Embedding, Linear, VarBuilder};
use candle_transformers::generation::LogitsProcessor;
+use std::io::Write;
use model::{Config, Llama};
@@ -38,21 +39,33 @@ struct TransformerWeights {
freq_cis_imag: Tensor, // (seq_len, head_size/2)
}
-impl Config {
- fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
- let mut buf = [0u8; 4];
- r.read_exact(&mut buf)?;
- Ok(i32::from_le_bytes(buf))
- }
+fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> {
+ let mut buf = [0u8; 4];
+ r.read_exact(&mut buf)?;
+ Ok(i32::from_le_bytes(buf))
+}
+fn read_tensor<R: std::io::Read, S: Into<Shape>>(
+ r: &mut R,
+ shape: S,
+ dev: &Device,
+) -> Result<Tensor> {
+ let shape = shape.into();
+ let mut data_t = vec![0f32; shape.elem_count()];
+ r.read_f32_into::<LittleEndian>(&mut data_t)?;
+ let tensor = Tensor::from_vec(data_t, shape, dev)?;
+ Ok(tensor)
+}
+
+impl Config {
fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> {
- let dim = Self::read_i32(r)? as usize;
- let hidden_dim = Self::read_i32(r)? as usize;
- let n_layers = Self::read_i32(r)? as usize;
- let n_heads = Self::read_i32(r)? as usize;
- let n_kv_heads = Self::read_i32(r)? as usize;
- let vocab_size = Self::read_i32(r)? as usize;
- let seq_len = Self::read_i32(r)? as usize;
+ let dim = read_i32(r)? as usize;
+ let hidden_dim = read_i32(r)? as usize;
+ let n_layers = read_i32(r)? as usize;
+ let n_heads = read_i32(r)? as usize;
+ let n_kv_heads = read_i32(r)? as usize;
+ let vocab_size = read_i32(r)? as usize;
+ let seq_len = read_i32(r)? as usize;
Ok(Self {
dim,
hidden_dim,
@@ -71,33 +84,21 @@ impl Config {
}
impl TransformerWeights {
- fn read_tensor<R: std::io::Read, S: Into<Shape>>(
- r: &mut R,
- shape: S,
- dev: &Device,
- ) -> Result<Tensor> {
- let shape = shape.into();
- let mut data_t = vec![0f32; shape.elem_count()];
- r.read_f32_into::<LittleEndian>(&mut data_t)?;
- let tensor = Tensor::from_vec(data_t, shape, dev)?;
- Ok(tensor)
- }
-
fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> {
- let token_embedding_table = Self::read_tensor(r, (c.vocab_size, c.dim), dev)?;
- let rms_att_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
- let wq = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
- let wk = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
- let wv = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
- let wo = Self::read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
- let rms_ffn_weight = Self::read_tensor(r, (c.n_layers, c.dim), dev)?;
- let w1 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
- let w2 = Self::read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
- let w3 = Self::read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
- let rms_final_weight = Self::read_tensor(r, c.dim, dev)?;
+ let token_embedding_table = read_tensor(r, (c.vocab_size, c.dim), dev)?;
+ let rms_att_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
+ let wq = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
+ let wk = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
+ let wv = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
+ let wo = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?;
+ let rms_ffn_weight = read_tensor(r, (c.n_layers, c.dim), dev)?;
+ let w1 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
+ let w2 = read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?;
+ let w3 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?;
+ let rms_final_weight = read_tensor(r, c.dim, dev)?;
let head_size = c.head_size();
- let freq_cis_real = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
- let freq_cis_imag = Self::read_tensor(r, (c.seq_len, head_size / 2), dev)?;
+ let freq_cis_real = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
+ let freq_cis_imag = read_tensor(r, (c.seq_len, head_size / 2), dev)?;
Ok(Self {
token_embedding_table,
rms_att_weight,
@@ -181,13 +182,36 @@ struct Args {
/// Config file in binary format.
#[arg(long)]
config: String,
+
+ /// Tokenizer config file in binary format.
+ #[arg(long)]
+ tokenizer: String,
+
+ /// The temperature used to generate samples.
+ #[arg(long)]
+ temperature: Option<f64>,
+}
+
+struct Tokenizer {
+ tokens: Vec<String>,
+}
+
+impl Tokenizer {
+ fn from_reader<R: std::io::Read>(r: &mut R, c: &Config) -> Result<Self> {
+ let mut tokens = Vec::with_capacity(c.vocab_size);
+ for _token_index in 0..c.vocab_size {
+ let token_len = read_i32(r)?;
+ let mut token = vec![0u8; token_len as usize];
+ r.read_exact(&mut token);
+ tokens.push(String::from_utf8_lossy(&token).into_owned())
+ }
+ Ok(Self { tokens })
+ }
}
fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
- let t = Tensor::arange(0f32, 14f32, &device)?.reshape((2, 7))?;
- println!("{t}");
let mut file = std::fs::File::open(&args.config)?;
let config = Config::from_reader(&mut file)?;
println!("config: {config:?}");
@@ -196,13 +220,15 @@ fn main() -> anyhow::Result<()> {
let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
let model = Llama::load(vb, &cache, &config)?;
+ let mut file = std::fs::File::open(&args.tokenizer)?;
+ let tokenizer = Tokenizer::from_reader(&mut file, &config)?;
+
println!("starting the inference loop");
- let mut logits_processor = LogitsProcessor::new(299792458, None);
- let mut new_tokens: Vec<u32> = vec![];
- let start_gen = std::time::Instant::now();
+ let mut logits_processor = LogitsProcessor::new(299792458, args.temperature);
let mut index_pos = 0;
let mut tokens = vec![1u32];
+ let start_gen = std::time::Instant::now();
for index in 0..config.seq_len - 10 {
let start_gen = std::time::Instant::now();
let context_size = if cache.use_kv_cache && index > 0 {
@@ -218,23 +244,14 @@ fn main() -> anyhow::Result<()> {
let next_token = logits_processor.sample(&logits)?;
tokens.push(next_token);
- new_tokens.push(next_token);
- println!("> {:?}", start_gen.elapsed());
- println!(
- "{} token: {} '{}'",
- index + 1,
- next_token,
- 0,
- // tokenizer.decode(vec![next_token], true).map_err(E::msg)?
- );
+ print!("{}", tokenizer.tokens[next_token as usize]);
+ std::io::stdout().flush()?;
}
let dt = start_gen.elapsed();
println!(
- "{} tokens generated ({} token/s)\n----\n{}\n----",
- config.seq_len,
- config.seq_len as f64 / dt.as_secs_f64(),
- 0,
- // tokenizer.decode(new_tokens, true).map_err(E::msg)?
+ "\n{} tokens generated ({:.2} token/s)\n",
+ tokens.len(),
+ tokens.len() as f64 / dt.as_secs_f64(),
);
Ok(())
}