summaryrefslogtreecommitdiff
path: root/candle-examples/examples/llama2-c/qmodel.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/llama2-c/qmodel.rs')
-rw-r--r--candle-examples/examples/llama2-c/qmodel.rs227
1 files changed, 227 insertions, 0 deletions
diff --git a/candle-examples/examples/llama2-c/qmodel.rs b/candle-examples/examples/llama2-c/qmodel.rs
new file mode 100644
index 00000000..07db146e
--- /dev/null
+++ b/candle-examples/examples/llama2-c/qmodel.rs
@@ -0,0 +1,227 @@
+use super::model::{Cache, Config};
+use candle::{DType, IndexOp, Module, Result, Tensor, D};
+use candle_transformers::quantized_nn::{linear_no_bias as linear, Embedding, Linear, RmsNorm};
+pub use candle_transformers::quantized_var_builder::VarBuilder;
+
+fn silu(xs: &Tensor) -> Result<Tensor> {
+ xs / (xs.neg()?.exp()? + 1.0)?
+}
+
+struct CausalSelfAttention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ o_proj: Linear,
+ n_head: usize,
+ n_key_value_head: usize,
+ head_dim: usize,
+ cache: Cache,
+}
+
+impl CausalSelfAttention {
+ fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let (b_sz, seq_len, h, n_embd) = x.dims4()?;
+ let cos = self.cache.cos.i(index_pos..index_pos + seq_len)?;
+ let sin = self.cache.sin.i(index_pos..index_pos + seq_len)?;
+ let cos = cos.unsqueeze(1)?;
+ let sin = sin.unsqueeze(1)?;
+ let cos = cos.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?;
+ let sin = sin.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?;
+ let x = x.reshape((b_sz, seq_len, h, n_embd / 2, 2))?;
+ let x0 = x.narrow(D::Minus1, 0, 1)?;
+ let x1 = x.narrow(D::Minus1, 1, 1)?;
+ let dst0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?;
+ let dst1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?;
+ let rope = Tensor::cat(&[&dst0, &dst1], D::Minus1)?.reshape((b_sz, seq_len, h, n_embd))?;
+ Ok(rope)
+ }
+
+ fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
+ let (b_sz, seq_len, n_embd) = x.dims3()?;
+ let q = self.q_proj.forward(x)?;
+ let k = self.k_proj.forward(x)?;
+ let v = self.v_proj.forward(x)?;
+
+ let q = q.reshape((b_sz, seq_len, self.n_head, self.head_dim))?;
+ let k = k.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?;
+ let mut v = v.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?;
+
+ let q = self.apply_rotary_emb(&q, index_pos)?;
+ let mut k = self.apply_rotary_emb(&k, index_pos)?;
+
+ if self.cache.use_kv_cache {
+ let mut cache = self.cache.kvs.lock().unwrap();
+ if let Some((cache_k, cache_v)) = &cache[block_idx] {
+ k = Tensor::cat(&[cache_k, &k], 1)?.contiguous()?;
+ v = Tensor::cat(&[cache_v, &v], 1)?.contiguous()?;
+ }
+ cache[block_idx] = Some((k.clone(), v.clone()))
+ }
+
+ let k = self.repeat_kv(k)?;
+ let v = self.repeat_kv(v)?;
+
+ let q = q.transpose(1, 2)?.contiguous()?;
+ let k = k.transpose(1, 2)?.contiguous()?;
+ let v = v.transpose(1, 2)?.contiguous()?;
+
+ let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
+ let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
+ let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
+ let att = candle_nn::ops::softmax(&att, D::Minus1)?;
+ // Convert to contiguous as matmul doesn't support strided vs for now.
+ let y = att.matmul(&v.contiguous()?)?;
+ let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
+ let y = self.o_proj.forward(&y)?;
+ Ok(y)
+ }
+
+ fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
+ let n_rep = self.n_head / self.n_key_value_head;
+ if n_rep == 1 {
+ Ok(x)
+ } else {
+ let (b_sz, seq_len, n_kv_head, head_dim) = x.dims4()?;
+ let x = x
+ .unsqueeze(3)?
+ .expand((b_sz, seq_len, n_kv_head, n_rep, head_dim))?
+ .reshape((b_sz, seq_len, n_kv_head * n_rep, head_dim))?;
+ Ok(x)
+ }
+ }
+
+ fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
+ let size_in = cfg.dim;
+ let size_q = (cfg.dim / cfg.n_heads) * cfg.n_heads;
+ let size_kv = (cfg.dim / cfg.n_heads) * cfg.n_kv_heads;
+ let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?;
+ let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?;
+ let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?;
+ let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?;
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ o_proj,
+ n_head: cfg.n_heads,
+ n_key_value_head: cfg.n_kv_heads,
+ head_dim: cfg.dim / cfg.n_heads,
+ cache: cache.clone(),
+ })
+ }
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
+ let shape = mask.shape();
+ let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
+ let m = mask.where_cond(&on_true, on_false)?;
+ Ok(m)
+}
+
+struct Mlp {
+ c_fc1: Linear,
+ c_fc2: Linear,
+ c_proj: Linear,
+}
+
+impl Mlp {
+ fn new(c_fc1: Linear, c_fc2: Linear, c_proj: Linear) -> Self {
+ Self {
+ c_fc1,
+ c_fc2,
+ c_proj,
+ }
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
+ self.c_proj.forward(&x)
+ }
+
+ fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let h_size = cfg.dim;
+ let i_size = cfg.hidden_dim;
+ let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
+ let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?;
+ let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?;
+ Ok(Self::new(c_fc1, c_fc2, c_proj))
+ }
+}
+
+struct Block {
+ rms_1: RmsNorm,
+ attn: CausalSelfAttention,
+ rms_2: RmsNorm,
+ mlp: Mlp,
+}
+
+impl Block {
+ fn new(rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp) -> Self {
+ Self {
+ rms_1,
+ attn,
+ rms_2,
+ mlp,
+ }
+ }
+
+ fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
+ let residual = x;
+ let x = self.rms_1.forward(x)?;
+ let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
+ let residual = &x;
+ let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?;
+ Ok(x)
+ }
+
+ fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
+ let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?;
+ let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
+ let input_layernorm = RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("input_layernorm"))?;
+ let post_attention_layernorm =
+ RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("post_attention_layernorm"))?;
+ Ok(Self::new(
+ input_layernorm,
+ attn,
+ post_attention_layernorm,
+ mlp,
+ ))
+ }
+}
+
+pub struct QLlama {
+ wte: Embedding,
+ blocks: Vec<Block>,
+ ln_f: RmsNorm,
+ lm_head: Linear,
+ pub config: Config,
+}
+
+impl QLlama {
+ pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let (_b_sz, _seq_len) = x.dims2()?;
+ let mut x = self.wte.forward(x)?;
+ for (block_idx, block) in self.blocks.iter().enumerate() {
+ x = block.forward(&x, index_pos, block_idx)?;
+ }
+ let x = self.ln_f.forward(&x)?;
+ let logits = self.lm_head.forward(&x)?;
+ logits.to_dtype(DType::F32)
+ }
+
+ pub fn load(vb: VarBuilder, cache: &Cache, cfg: Config) -> Result<Self> {
+ let wte = Embedding::new(cfg.vocab_size, cfg.dim, vb.pp("model.embed_tokens"))?;
+ let lm_head = linear(cfg.dim, cfg.vocab_size, vb.pp("lm_head"))?;
+ let ln_f = RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("model.norm"))?;
+ let blocks: Vec<_> = (0..cfg.n_layers)
+ .map(|i| Block::load(vb.pp(format!("model.layers.{i}")), cache, &cfg).unwrap())
+ .collect();
+ Ok(Self {
+ wte,
+ blocks,
+ ln_f,
+ lm_head,
+ config: cfg,
+ })
+ }
+}