diff options
Diffstat (limited to 'candle-examples/examples/mamba-minimal/model.rs')
-rw-r--r-- | candle-examples/examples/mamba-minimal/model.rs | 204 |
1 files changed, 204 insertions, 0 deletions
diff --git a/candle-examples/examples/mamba-minimal/model.rs b/candle-examples/examples/mamba-minimal/model.rs new file mode 100644 index 00000000..4a0a345d --- /dev/null +++ b/candle-examples/examples/mamba-minimal/model.rs @@ -0,0 +1,204 @@ +/// This follows the lines of: +/// https://github.com/johnma2006/mamba-minimal/blob/master/model.py +/// Simple, minimal implementation of Mamba in one file of PyTorch. +use candle::{IndexOp, Module, Result, Tensor, D}; +use candle_nn::{RmsNorm, VarBuilder}; + +use candle_transformers::models::with_tracing::{linear, linear_no_bias, Linear}; + +#[derive(Debug, Clone, serde::Deserialize)] +pub struct Config { + d_model: usize, + n_layer: usize, + vocab_size: usize, + pad_vocab_size_multiple: usize, +} + +impl Config { + fn vocab_size(&self) -> usize { + let pad = self.pad_vocab_size_multiple; + (self.vocab_size + pad - 1) / pad * pad + } + + fn dt_rank(&self) -> usize { + (self.d_model + 15) / 16 + } + + fn d_conv(&self) -> usize { + 4 + } + + fn d_state(&self) -> usize { + 16 + } + + fn d_inner(&self) -> usize { + self.d_model * 2 + } +} + +// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L177 +#[derive(Clone, Debug)] +pub struct MambaBlock { + in_proj: Linear, + conv1d: candle_nn::Conv1d, + x_proj: Linear, + dt_proj: Linear, + a_log: Tensor, + d: Tensor, + out_proj: Linear, + dt_rank: usize, +} + +impl MambaBlock { + pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { + let d_inner = cfg.d_inner(); + let d_conv = cfg.d_conv(); + let d_state = cfg.d_state(); + let dt_rank = cfg.dt_rank(); + let in_proj = linear_no_bias(cfg.d_model, d_inner * 2, vb.pp("in_proj"))?; + let conv_cfg = candle_nn::Conv1dConfig { + groups: d_inner, + padding: d_conv - 1, + ..Default::default() + }; + let conv1d = candle_nn::conv1d(d_inner, d_inner, d_conv, conv_cfg, vb.pp("conv1d"))?; + let x_proj = linear_no_bias(d_inner, dt_rank + d_state * 2, vb.pp("x_proj"))?; + let dt_proj = linear(dt_rank, d_inner, vb.pp("dt_proj"))?; + let a_log = vb.get((d_inner, d_state), "A_log")?; + let d = vb.get(d_inner, "D")?; + let out_proj = linear_no_bias(d_inner, cfg.d_model, vb.pp("out_proj"))?; + Ok(Self { + in_proj, + conv1d, + x_proj, + dt_proj, + a_log, + d, + out_proj, + dt_rank, + }) + } + + fn ssm(&self, xs: &Tensor) -> Result<Tensor> { + let (_d_in, n) = self.a_log.dims2()?; + let a = self.a_log.to_dtype(candle::DType::F32)?.exp()?.neg()?; + let d = self.d.to_dtype(candle::DType::F32)?; + let x_dbl = xs.apply(&self.x_proj)?; + let delta = x_dbl.narrow(D::Minus1, 0, self.dt_rank)?; + let b = x_dbl.narrow(D::Minus1, self.dt_rank, n)?; + let c = x_dbl.narrow(D::Minus1, self.dt_rank + n, n)?; + let delta = delta.contiguous()?.apply(&self.dt_proj)?; + // softplus without threshold + let delta = (delta.exp()? + 1.)?.log()?; + let ss = selective_scan(xs, &delta, &a, &b, &c, &d)?; + Ok(ss) + } +} + +// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L275 +fn selective_scan( + u: &Tensor, + delta: &Tensor, + a: &Tensor, + b: &Tensor, + c: &Tensor, + d: &Tensor, +) -> Result<Tensor> { + let (b_sz, l, d_in) = u.dims3()?; + let n = a.dim(1)?; + let delta = delta.t()?.reshape((b_sz, d_in, l, 1))?; // b d_in l 1 + let delta_a = delta.broadcast_mul(&a.reshape((1, d_in, 1, n))?)?.exp()?; + let delta_b_u = delta + .broadcast_mul(&b.reshape((b_sz, 1, l, n))?)? + .broadcast_mul(&u.t()?.reshape((b_sz, d_in, l, 1))?)?; + let mut xs = Tensor::zeros((b_sz, d_in, n), delta_a.dtype(), delta_a.device())?; + let mut ys = Vec::with_capacity(l); + for i in 0..l { + xs = ((delta_a.i((.., .., i))? * xs)? + delta_b_u.i((.., .., i))?)?; + let y = xs.matmul(&c.i((.., i, ..))?.unsqueeze(2)?)?.squeeze(2)?; + ys.push(y) + } + let ys = Tensor::stack(ys.as_slice(), 1)?; + ys + u.broadcast_mul(d) +} + +impl Module for MambaBlock { + // https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L206 + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let (_b_sz, seq_len, _dim) = xs.dims3()?; + let xs_and_res = xs.apply(&self.in_proj)?.chunk(2, D::Minus1)?; + let (xs, res) = (&xs_and_res[0], &xs_and_res[1]); + let xs = xs + .t()? + .apply(&self.conv1d)? + .narrow(D::Minus1, 0, seq_len)? + .t()?; + let xs = candle_nn::ops::silu(&xs)?; + let ys = (self.ssm(&xs)? * candle_nn::ops::silu(res))?; + ys.apply(&self.out_proj) + } +} + +// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L143 +#[derive(Clone, Debug)] +pub struct ResidualBlock { + mixer: MambaBlock, + norm: RmsNorm, +} + +impl ResidualBlock { + pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { + let norm = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm"))?; + let mixer = MambaBlock::new(cfg, vb.pp("mixer"))?; + Ok(Self { mixer, norm }) + } +} + +impl Module for ResidualBlock { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + xs.apply(&self.norm)?.apply(&self.mixer)? + xs + } +} + +// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L56 +#[derive(Clone, Debug)] +pub struct Model { + embedding: candle_nn::Embedding, + layers: Vec<ResidualBlock>, + norm_f: RmsNorm, + lm_head: Linear, +} + +impl Model { + pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { + let embedding = candle_nn::embedding(cfg.vocab_size(), cfg.d_model, vb.pp("embedding"))?; + let mut layers = Vec::with_capacity(cfg.n_layer); + let vb_l = vb.pp("layers"); + for layer_idx in 0..cfg.n_layer { + let layer = ResidualBlock::new(cfg, vb_l.pp(layer_idx))?; + layers.push(layer) + } + let norm_f = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm_f"))?; + let lm_head = Linear::from_weights(embedding.embeddings().clone(), None); + Ok(Self { + embedding, + layers, + norm_f, + lm_head, + }) + } +} + +impl Module for Model { + fn forward(&self, input_ids: &Tensor) -> Result<Tensor> { + let (_b_size, seq_len) = input_ids.dims2()?; + let mut xs = self.embedding.forward(input_ids)?; + for layer in self.layers.iter() { + xs = layer.forward(&xs)? + } + xs.narrow(1, seq_len - 1, 1)? + .apply(&self.norm_f)? + .apply(&self.lm_head) + } +} |