summaryrefslogtreecommitdiff
path: root/candle-examples/examples/mamba-minimal/model.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/mamba-minimal/model.rs')
-rw-r--r--candle-examples/examples/mamba-minimal/model.rs204
1 files changed, 204 insertions, 0 deletions
diff --git a/candle-examples/examples/mamba-minimal/model.rs b/candle-examples/examples/mamba-minimal/model.rs
new file mode 100644
index 00000000..4a0a345d
--- /dev/null
+++ b/candle-examples/examples/mamba-minimal/model.rs
@@ -0,0 +1,204 @@
+/// This follows the lines of:
+/// https://github.com/johnma2006/mamba-minimal/blob/master/model.py
+/// Simple, minimal implementation of Mamba in one file of PyTorch.
+use candle::{IndexOp, Module, Result, Tensor, D};
+use candle_nn::{RmsNorm, VarBuilder};
+
+use candle_transformers::models::with_tracing::{linear, linear_no_bias, Linear};
+
+#[derive(Debug, Clone, serde::Deserialize)]
+pub struct Config {
+ d_model: usize,
+ n_layer: usize,
+ vocab_size: usize,
+ pad_vocab_size_multiple: usize,
+}
+
+impl Config {
+ fn vocab_size(&self) -> usize {
+ let pad = self.pad_vocab_size_multiple;
+ (self.vocab_size + pad - 1) / pad * pad
+ }
+
+ fn dt_rank(&self) -> usize {
+ (self.d_model + 15) / 16
+ }
+
+ fn d_conv(&self) -> usize {
+ 4
+ }
+
+ fn d_state(&self) -> usize {
+ 16
+ }
+
+ fn d_inner(&self) -> usize {
+ self.d_model * 2
+ }
+}
+
+// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L177
+#[derive(Clone, Debug)]
+pub struct MambaBlock {
+ in_proj: Linear,
+ conv1d: candle_nn::Conv1d,
+ x_proj: Linear,
+ dt_proj: Linear,
+ a_log: Tensor,
+ d: Tensor,
+ out_proj: Linear,
+ dt_rank: usize,
+}
+
+impl MambaBlock {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let d_inner = cfg.d_inner();
+ let d_conv = cfg.d_conv();
+ let d_state = cfg.d_state();
+ let dt_rank = cfg.dt_rank();
+ let in_proj = linear_no_bias(cfg.d_model, d_inner * 2, vb.pp("in_proj"))?;
+ let conv_cfg = candle_nn::Conv1dConfig {
+ groups: d_inner,
+ padding: d_conv - 1,
+ ..Default::default()
+ };
+ let conv1d = candle_nn::conv1d(d_inner, d_inner, d_conv, conv_cfg, vb.pp("conv1d"))?;
+ let x_proj = linear_no_bias(d_inner, dt_rank + d_state * 2, vb.pp("x_proj"))?;
+ let dt_proj = linear(dt_rank, d_inner, vb.pp("dt_proj"))?;
+ let a_log = vb.get((d_inner, d_state), "A_log")?;
+ let d = vb.get(d_inner, "D")?;
+ let out_proj = linear_no_bias(d_inner, cfg.d_model, vb.pp("out_proj"))?;
+ Ok(Self {
+ in_proj,
+ conv1d,
+ x_proj,
+ dt_proj,
+ a_log,
+ d,
+ out_proj,
+ dt_rank,
+ })
+ }
+
+ fn ssm(&self, xs: &Tensor) -> Result<Tensor> {
+ let (_d_in, n) = self.a_log.dims2()?;
+ let a = self.a_log.to_dtype(candle::DType::F32)?.exp()?.neg()?;
+ let d = self.d.to_dtype(candle::DType::F32)?;
+ let x_dbl = xs.apply(&self.x_proj)?;
+ let delta = x_dbl.narrow(D::Minus1, 0, self.dt_rank)?;
+ let b = x_dbl.narrow(D::Minus1, self.dt_rank, n)?;
+ let c = x_dbl.narrow(D::Minus1, self.dt_rank + n, n)?;
+ let delta = delta.contiguous()?.apply(&self.dt_proj)?;
+ // softplus without threshold
+ let delta = (delta.exp()? + 1.)?.log()?;
+ let ss = selective_scan(xs, &delta, &a, &b, &c, &d)?;
+ Ok(ss)
+ }
+}
+
+// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L275
+fn selective_scan(
+ u: &Tensor,
+ delta: &Tensor,
+ a: &Tensor,
+ b: &Tensor,
+ c: &Tensor,
+ d: &Tensor,
+) -> Result<Tensor> {
+ let (b_sz, l, d_in) = u.dims3()?;
+ let n = a.dim(1)?;
+ let delta = delta.t()?.reshape((b_sz, d_in, l, 1))?; // b d_in l 1
+ let delta_a = delta.broadcast_mul(&a.reshape((1, d_in, 1, n))?)?.exp()?;
+ let delta_b_u = delta
+ .broadcast_mul(&b.reshape((b_sz, 1, l, n))?)?
+ .broadcast_mul(&u.t()?.reshape((b_sz, d_in, l, 1))?)?;
+ let mut xs = Tensor::zeros((b_sz, d_in, n), delta_a.dtype(), delta_a.device())?;
+ let mut ys = Vec::with_capacity(l);
+ for i in 0..l {
+ xs = ((delta_a.i((.., .., i))? * xs)? + delta_b_u.i((.., .., i))?)?;
+ let y = xs.matmul(&c.i((.., i, ..))?.unsqueeze(2)?)?.squeeze(2)?;
+ ys.push(y)
+ }
+ let ys = Tensor::stack(ys.as_slice(), 1)?;
+ ys + u.broadcast_mul(d)
+}
+
+impl Module for MambaBlock {
+ // https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L206
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let (_b_sz, seq_len, _dim) = xs.dims3()?;
+ let xs_and_res = xs.apply(&self.in_proj)?.chunk(2, D::Minus1)?;
+ let (xs, res) = (&xs_and_res[0], &xs_and_res[1]);
+ let xs = xs
+ .t()?
+ .apply(&self.conv1d)?
+ .narrow(D::Minus1, 0, seq_len)?
+ .t()?;
+ let xs = candle_nn::ops::silu(&xs)?;
+ let ys = (self.ssm(&xs)? * candle_nn::ops::silu(res))?;
+ ys.apply(&self.out_proj)
+ }
+}
+
+// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L143
+#[derive(Clone, Debug)]
+pub struct ResidualBlock {
+ mixer: MambaBlock,
+ norm: RmsNorm,
+}
+
+impl ResidualBlock {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let norm = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm"))?;
+ let mixer = MambaBlock::new(cfg, vb.pp("mixer"))?;
+ Ok(Self { mixer, norm })
+ }
+}
+
+impl Module for ResidualBlock {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ xs.apply(&self.norm)?.apply(&self.mixer)? + xs
+ }
+}
+
+// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L56
+#[derive(Clone, Debug)]
+pub struct Model {
+ embedding: candle_nn::Embedding,
+ layers: Vec<ResidualBlock>,
+ norm_f: RmsNorm,
+ lm_head: Linear,
+}
+
+impl Model {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let embedding = candle_nn::embedding(cfg.vocab_size(), cfg.d_model, vb.pp("embedding"))?;
+ let mut layers = Vec::with_capacity(cfg.n_layer);
+ let vb_l = vb.pp("layers");
+ for layer_idx in 0..cfg.n_layer {
+ let layer = ResidualBlock::new(cfg, vb_l.pp(layer_idx))?;
+ layers.push(layer)
+ }
+ let norm_f = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm_f"))?;
+ let lm_head = Linear::from_weights(embedding.embeddings().clone(), None);
+ Ok(Self {
+ embedding,
+ layers,
+ norm_f,
+ lm_head,
+ })
+ }
+}
+
+impl Module for Model {
+ fn forward(&self, input_ids: &Tensor) -> Result<Tensor> {
+ let (_b_size, seq_len) = input_ids.dims2()?;
+ let mut xs = self.embedding.forward(input_ids)?;
+ for layer in self.layers.iter() {
+ xs = layer.forward(&xs)?
+ }
+ xs.narrow(1, seq_len - 1, 1)?
+ .apply(&self.norm_f)?
+ .apply(&self.lm_head)
+ }
+}