diff options
Diffstat (limited to 'candle-pyo3/quant-llama.py')
-rw-r--r-- | candle-pyo3/quant-llama.py | 31 |
1 files changed, 16 insertions, 15 deletions
diff --git a/candle-pyo3/quant-llama.py b/candle-pyo3/quant-llama.py index 020d525d..46d9ff62 100644 --- a/candle-pyo3/quant-llama.py +++ b/candle-pyo3/quant-llama.py @@ -1,27 +1,28 @@ # This example shows how the candle Python api can be used to replicate llama.cpp. import sys +from typing import Dict, Tuple, Any import candle -from candle.utils import load_ggml,load_gguf +from candle import Tensor, QTensor, utils, nn MAX_SEQ_LEN = 4096 -def masked_fill(on_false, mask, on_true): +def masked_fill(on_false:Tensor, mask:Tensor, on_true:Tensor): shape = mask.shape on_true = candle.tensor(on_true).broadcast_as(shape) return mask.where_cond(on_true, on_false) class RmsNorm: - def __init__(self, qtensor): + def __init__(self, qtensor:QTensor): self.weight = qtensor.dequantize() - def __call__(self, x): + def __call__(self, x:Tensor): b_size, seq_len, hidden_size = x.shape norm_x = x.sqr().sum_keepdim(2) / hidden_size x_normed = x.broadcast_div((norm_x + 1e-5).sqrt()) return x_normed.broadcast_mul(self.weight) class QuantizedLayer: - def __init__(self, layer_idx, hparams, all_tensors, cos_sin): + def __init__(self, layer_idx:int, hparams:Dict[str,Any], all_tensors:Dict[str,QTensor], cos_sin:Tuple[Tensor,Tensor]): p = f"layers.{layer_idx}" self.attention_wq = all_tensors[f"{p}.attention.wq.weight"] self.attention_wk = all_tensors[f"{p}.attention.wk.weight"] @@ -41,7 +42,7 @@ class QuantizedLayer: self.cos = cos_sin[0] self.sin = cos_sin[1] - def __call__(self, x, mask, index_pos): + def __call__(self, x:Tensor, mask:Tensor, index_pos:int): residual = x x = self.attn_norm(x) attn = self.forward_attn(x, mask, index_pos) @@ -51,11 +52,11 @@ class QuantizedLayer: x = self.ffn_norm(x) w1 = self.ffw1.matmul_t(x) w3 = self.ffw3.matmul_t(x) - mlp = self.ffw2.matmul_t(candle.nn.silu(w1) * w3) + mlp = self.ffw2.matmul_t(nn.silu(w1) * w3) return mlp + residual - def forward_attn(self, x, mask, index_pos): + def forward_attn(self, x:Tensor, mask:Tensor, index_pos:int): b_size, seq_len, n_embd = x.shape q = self.attention_wq.matmul_t(x) k = self.attention_wk.matmul_t(x) @@ -80,12 +81,12 @@ class QuantizedLayer: att = q.matmul(k.t()) / self.head_dim**0.5 mask = mask.broadcast_as(att.shape) att = masked_fill(att, mask, float("-inf")) - att = candle.nn.softmax(att, -1) + att = nn.softmax(att, -1) y = att.matmul(v.contiguous()) y = y.transpose(1, 2).reshape((b_size, seq_len, n_embd)) return self.attention_wo.matmul_t(y) - def apply_rotary_emb(self, x, index_pos): + def apply_rotary_emb(self, x:Tensor, index_pos:int): (b_size, n_head, seq_len, n_embd) = x.shape cos = self.cos.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd//2, 1)) sin = self.sin.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd//2, 1)) @@ -107,7 +108,7 @@ def precompute_freqs_cis(hparams, freq_base): return (m.cos(), m.sin()) class QuantizedLlama: - def __init__(self, hparams, all_tensors): + def __init__(self, hparams:Dict[str,Any], all_tensors:Dict[str,QTensor]): self.tok_embeddings = all_tensors["tok_embeddings.weight"].dequantize() self.norm = RmsNorm(all_tensors["norm.weight"]) self.output = all_tensors["output.weight"] @@ -118,7 +119,7 @@ class QuantizedLlama: layer = QuantizedLayer(layer_idx, hparams, all_tensors, cos_sin) self.layers.append(layer) - def __call__(self, token, index_pos): + def __call__(self, token:Tensor, index_pos:int): b_size, seq_len = token.shape vocab_size, hidden_size = self.tok_embeddings.shape token = token.reshape((b_size * seq_len,)) @@ -135,7 +136,7 @@ class QuantizedLlama: x = self.output.matmul_t(x) return x -def gguf_rename(tensor_name): +def gguf_rename(tensor_name:str): if tensor_name == 'token_embd.weight': return 'tok_embeddings.weight' if tensor_name == 'output_norm.weight': return 'norm.weight' tensor_name = tensor_name.replace('blk.', 'layers.') @@ -155,7 +156,7 @@ def main(): filename = sys.argv[1] print(f"reading model file {filename}") if filename.endswith("gguf"): - all_tensors, metadata = load_gguf(sys.argv[1]) + all_tensors, metadata = utils.load_gguf(sys.argv[1]) vocab = metadata["tokenizer.ggml.tokens"] for i, v in enumerate(vocab): vocab[i] = '\n' if v == '<0x0A>' else v.replace('▁', ' ') @@ -175,7 +176,7 @@ def main(): all_tensors = { gguf_rename(k): v for k, v in all_tensors.items() } else: - all_tensors, hparams, vocab = load_ggml(sys.argv[1]) + all_tensors, hparams, vocab = utils.load_ggml(sys.argv[1]) print(hparams) model = QuantizedLlama(hparams, all_tensors) print("model built, starting inference") |