summaryrefslogtreecommitdiff
path: root/candle-pyo3/quant-llama.py
diff options
context:
space:
mode:
Diffstat (limited to 'candle-pyo3/quant-llama.py')
-rw-r--r--candle-pyo3/quant-llama.py197
1 files changed, 38 insertions, 159 deletions
diff --git a/candle-pyo3/quant-llama.py b/candle-pyo3/quant-llama.py
index 46d9ff62..1cb39e4f 100644
--- a/candle-pyo3/quant-llama.py
+++ b/candle-pyo3/quant-llama.py
@@ -2,181 +2,59 @@
import sys
from typing import Dict, Tuple, Any
import candle
-from candle import Tensor, QTensor, utils, nn
+from candle.models.llama import QuantizedLlama
+from candle import utils
MAX_SEQ_LEN = 4096
-def masked_fill(on_false:Tensor, mask:Tensor, on_true:Tensor):
- shape = mask.shape
- on_true = candle.tensor(on_true).broadcast_as(shape)
- return mask.where_cond(on_true, on_false)
-class RmsNorm:
- def __init__(self, qtensor:QTensor):
- self.weight = qtensor.dequantize()
-
- def __call__(self, x:Tensor):
- b_size, seq_len, hidden_size = x.shape
- norm_x = x.sqr().sum_keepdim(2) / hidden_size
- x_normed = x.broadcast_div((norm_x + 1e-5).sqrt())
- return x_normed.broadcast_mul(self.weight)
-
-class QuantizedLayer:
- def __init__(self, layer_idx:int, hparams:Dict[str,Any], all_tensors:Dict[str,QTensor], cos_sin:Tuple[Tensor,Tensor]):
- p = f"layers.{layer_idx}"
- self.attention_wq = all_tensors[f"{p}.attention.wq.weight"]
- self.attention_wk = all_tensors[f"{p}.attention.wk.weight"]
- self.attention_wv = all_tensors[f"{p}.attention.wv.weight"]
- self.attention_wo = all_tensors[f"{p}.attention.wo.weight"]
- self.ffw1 = all_tensors[f"{p}.feed_forward.w1.weight"]
- self.ffw2 = all_tensors[f"{p}.feed_forward.w2.weight"]
- self.ffw3 = all_tensors[f"{p}.feed_forward.w3.weight"]
- self.attn_norm = RmsNorm(all_tensors[f"{p}.attention_norm.weight"])
- self.ffn_norm = RmsNorm(all_tensors[f"{p}.ffn_norm.weight"])
-
- self.n_head = hparams["n_head"]
- self.n_kv_head = self.n_head
- self.head_dim = hparams["n_embd"] // self.n_head
-
- self.kv_cache = None
- self.cos = cos_sin[0]
- self.sin = cos_sin[1]
-
- def __call__(self, x:Tensor, mask:Tensor, index_pos:int):
- residual = x
- x = self.attn_norm(x)
- attn = self.forward_attn(x, mask, index_pos)
- x = attn + residual
-
- residual = x
- x = self.ffn_norm(x)
- w1 = self.ffw1.matmul_t(x)
- w3 = self.ffw3.matmul_t(x)
- mlp = self.ffw2.matmul_t(nn.silu(w1) * w3)
-
- return mlp + residual
-
- def forward_attn(self, x:Tensor, mask:Tensor, index_pos:int):
- b_size, seq_len, n_embd = x.shape
- q = self.attention_wq.matmul_t(x)
- k = self.attention_wk.matmul_t(x)
- v = self.attention_wv.matmul_t(x)
-
- q = q.reshape((b_size, seq_len, self.n_head, self.head_dim)).transpose(1, 2)
- k = k.reshape((b_size, seq_len, self.n_kv_head, self.head_dim)).transpose(1, 2)
- v = v.reshape((b_size, seq_len, self.n_kv_head, self.head_dim)).transpose(1, 2)
-
- q = self.apply_rotary_emb(q, index_pos)
- k = self.apply_rotary_emb(k, index_pos)
-
- if self.kv_cache is not None and index_pos > 0:
- prev_k, prev_v = self.kv_cache
- k = candle.cat([prev_k, k], 2).contiguous()
- v = candle.cat([prev_v, v], 2).contiguous()
-
- self.kv_cache = (k, v)
-
- # TODO: maybe repeat k/v here if we start supporting MQA.
-
- att = q.matmul(k.t()) / self.head_dim**0.5
- mask = mask.broadcast_as(att.shape)
- att = masked_fill(att, mask, float("-inf"))
- att = nn.softmax(att, -1)
- y = att.matmul(v.contiguous())
- y = y.transpose(1, 2).reshape((b_size, seq_len, n_embd))
- return self.attention_wo.matmul_t(y)
-
- def apply_rotary_emb(self, x:Tensor, index_pos:int):
- (b_size, n_head, seq_len, n_embd) = x.shape
- cos = self.cos.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd//2, 1))
- sin = self.sin.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd//2, 1))
- x = x.reshape((b_size, n_head, seq_len, n_embd//2, 2))
- x0 = x.narrow(-1, 0, 1)
- x1 = x.narrow(-1, 1, 1)
- y0 = x0.broadcast_mul(cos) - x1.broadcast_mul(sin)
- y1 = x0.broadcast_mul(sin) + x1.broadcast_mul(cos)
- rope = candle.cat([y0, y1], -1)
- return rope.flatten_from(-2)
-
-def precompute_freqs_cis(hparams, freq_base):
- head_dim = hparams["n_embd"] // hparams["n_head"]
- theta = [1.0 / freq_base ** (i / head_dim) for i in range(0, head_dim, 2)]
- theta = candle.tensor(theta)
- idx_theta = [float(i) for i in range(MAX_SEQ_LEN)]
- idx_theta = candle.tensor(idx_theta).reshape((MAX_SEQ_LEN, 1))
- m = idx_theta.matmul(theta.unsqueeze(0))
- return (m.cos(), m.sin())
-
-class QuantizedLlama:
- def __init__(self, hparams:Dict[str,Any], all_tensors:Dict[str,QTensor]):
- self.tok_embeddings = all_tensors["tok_embeddings.weight"].dequantize()
- self.norm = RmsNorm(all_tensors["norm.weight"])
- self.output = all_tensors["output.weight"]
- self.layers = []
- rope_freq = hparams.get("rope_freq", 10000.)
- cos_sin = precompute_freqs_cis(hparams, rope_freq)
- for layer_idx in range(hparams["n_layer"]):
- layer = QuantizedLayer(layer_idx, hparams, all_tensors, cos_sin)
- self.layers.append(layer)
-
- def __call__(self, token:Tensor, index_pos:int):
- b_size, seq_len = token.shape
- vocab_size, hidden_size = self.tok_embeddings.shape
- token = token.reshape((b_size * seq_len,))
- x = self.tok_embeddings.index_select(token, 0)
- x = x.reshape((b_size, seq_len, hidden_size))
-
- mask = [int(j > i) for j in range(seq_len) for i in range(seq_len)]
- mask = candle.tensor(mask).reshape((seq_len, seq_len))
-
- for layer in self.layers:
- x = layer(x, mask, index_pos)
- x = self.norm(x)
- x = x.narrow(1, -1, 1).squeeze(1)
- x = self.output.matmul_t(x)
- return x
-
-def gguf_rename(tensor_name:str):
- if tensor_name == 'token_embd.weight': return 'tok_embeddings.weight'
- if tensor_name == 'output_norm.weight': return 'norm.weight'
- tensor_name = tensor_name.replace('blk.', 'layers.')
- tensor_name = tensor_name.replace('.attn_q.', '.attention.wq.')
- tensor_name = tensor_name.replace('.attn_k.', '.attention.wk.')
- tensor_name = tensor_name.replace('.attn_v.', '.attention.wv.')
- tensor_name = tensor_name.replace('.attn_output.', '.attention.wo.')
- tensor_name = tensor_name.replace('.ffn_gate.', '.feed_forward.w1.')
- tensor_name = tensor_name.replace('.ffn_down.', '.feed_forward.w2.')
- tensor_name = tensor_name.replace('.ffn_up.', '.feed_forward.w3.')
- tensor_name = tensor_name.replace('.attn_norm.', '.attention_norm.')
+def gguf_rename(tensor_name: str):
+ if tensor_name == "token_embd.weight":
+ return "tok_embeddings.weight"
+ if tensor_name == "output_norm.weight":
+ return "norm.weight"
+ tensor_name = tensor_name.replace("blk.", "layers.")
+ tensor_name = tensor_name.replace(".attn_q.", ".attention.wq.")
+ tensor_name = tensor_name.replace(".attn_k.", ".attention.wk.")
+ tensor_name = tensor_name.replace(".attn_v.", ".attention.wv.")
+ tensor_name = tensor_name.replace(".attn_output.", ".attention.wo.")
+ tensor_name = tensor_name.replace(".ffn_gate.", ".feed_forward.w1.")
+ tensor_name = tensor_name.replace(".ffn_down.", ".feed_forward.w2.")
+ tensor_name = tensor_name.replace(".ffn_up.", ".feed_forward.w3.")
+ tensor_name = tensor_name.replace(".attn_norm.", ".attention_norm.")
return tensor_name
+
def main():
if len(sys.argv) < 2:
raise ValueError("missing weight file argument")
+
filename = sys.argv[1]
print(f"reading model file {filename}")
if filename.endswith("gguf"):
- all_tensors, metadata = utils.load_gguf(sys.argv[1])
+ all_tensors, metadata = utils.load_gguf(filename)
vocab = metadata["tokenizer.ggml.tokens"]
for i, v in enumerate(vocab):
- vocab[i] = '\n' if v == '<0x0A>' else v.replace('▁', ' ')
+ vocab[i] = "\n" if v == "<0x0A>" else v.replace("▁", " ")
hparams = {k: v for (k, v) in metadata.items() if not k.startswith("tokenizer")}
print(hparams)
hparams = {
- 'n_vocab': len(vocab),
- 'n_embd': metadata['llama.embedding_length'],
- 'n_mult': 256,
- 'n_head': metadata['llama.attention.head_count'],
- 'n_head_kv': metadata['llama.attention.head_count_kv'],
- 'n_layer': metadata['llama.block_count'],
- 'n_rot': metadata['llama.rope.dimension_count'],
- 'rope_freq': metadata.get('llama.rope.freq_base', 10000.),
- 'ftype': metadata['general.file_type'],
+ "n_vocab": len(vocab),
+ "n_embd": metadata["llama.embedding_length"],
+ "n_mult": 256,
+ "n_head": metadata["llama.attention.head_count"],
+ "n_head_kv": metadata["llama.attention.head_count_kv"],
+ "n_layer": metadata["llama.block_count"],
+ "n_rot": metadata["llama.rope.dimension_count"],
+ "rope_freq": metadata.get("llama.rope.freq_base", 10000.0),
+ "ftype": metadata["general.file_type"],
+ "context_length": metadata["llama.context_length"],
}
- all_tensors = { gguf_rename(k): v for k, v in all_tensors.items() }
-
+ all_tensors = {gguf_rename(k): v for k, v in all_tensors.items()}
else:
- all_tensors, hparams, vocab = utils.load_ggml(sys.argv[1])
+ all_tensors, hparams, vocab = utils.load_ggml(filename)
+ hparams["context_length"] = 2048
+
print(hparams)
model = QuantizedLlama(hparams, all_tensors)
print("model built, starting inference")
@@ -185,13 +63,14 @@ def main():
for token_idx in range(500):
last_token = tokens[-1]
lt = candle.tensor([last_token]).unsqueeze(0)
- logits = model(lt, len(tokens))
+ logits = model.forward(lt, len(tokens))
# Greedy sampling for now
# pr = candle.nn.softmax(logits, -1)
m = logits.get(0).argmax_keepdim(-1)
next_token = m.values()[0]
- print(vocab[next_token], end='', flush=True)
+ print(vocab[next_token], end="", flush=True)
tokens.append(next_token)
-if __name__ == '__main__':
+
+if __name__ == "__main__":
main()