summaryrefslogtreecommitdiff
path: root/candle-pyo3/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-pyo3/src/lib.rs')
-rw-r--r--candle-pyo3/src/lib.rs71
1 files changed, 35 insertions, 36 deletions
diff --git a/candle-pyo3/src/lib.rs b/candle-pyo3/src/lib.rs
index 6d4de80b..41c4577f 100644
--- a/candle-pyo3/src/lib.rs
+++ b/candle-pyo3/src/lib.rs
@@ -16,27 +16,14 @@ extern crate accelerate_src;
use ::candle::{quantized::QTensor, DType, Device, Tensor, WithDType};
+mod shape;
+use shape::{PyShape, PyShapeWithHole};
+
pub fn wrap_err(err: ::candle::Error) -> PyErr {
PyErr::new::<PyValueError, _>(format!("{err:?}"))
}
#[derive(Clone, Debug)]
-struct PyShape(Vec<usize>);
-
-impl<'source> pyo3::FromPyObject<'source> for PyShape {
- fn extract(ob: &'source PyAny) -> PyResult<Self> {
- let dims: Vec<usize> = pyo3::FromPyObject::extract(ob)?;
- Ok(PyShape(dims))
- }
-}
-
-impl From<PyShape> for ::candle::Shape {
- fn from(val: PyShape) -> Self {
- val.0.into()
- }
-}
-
-#[derive(Clone, Debug)]
#[pyclass(name = "Tensor")]
/// A `candle` tensor.
struct PyTensor(Tensor);
@@ -684,25 +671,37 @@ impl PyTensor {
Ok(Self(tensor))
}
- #[pyo3(text_signature = "(self, shape:Sequence[int])")]
+ #[pyo3(signature=(*shape), text_signature = "(self, *shape:Shape)")]
/// Reshapes the tensor to the given shape.
/// &RETURNS&: Tensor
- fn reshape(&self, shape: PyShape) -> PyResult<Self> {
- Ok(PyTensor(self.0.reshape(shape).map_err(wrap_err)?))
+ fn reshape(&self, shape: PyShapeWithHole) -> PyResult<Self> {
+ Ok(PyTensor(
+ self.0
+ .reshape(shape.to_absolute(&self.0)?)
+ .map_err(wrap_err)?,
+ ))
}
- #[pyo3(text_signature = "(self, shape:Sequence[int])")]
+ #[pyo3(signature=(*shape), text_signature = "(self, *shape:Shape)")]
/// Broadcasts the tensor to the given shape.
/// &RETURNS&: Tensor
- fn broadcast_as(&self, shape: PyShape) -> PyResult<Self> {
- Ok(PyTensor(self.0.broadcast_as(shape).map_err(wrap_err)?))
+ fn broadcast_as(&self, shape: PyShapeWithHole) -> PyResult<Self> {
+ Ok(PyTensor(
+ self.0
+ .broadcast_as(shape.to_absolute(&self.0)?)
+ .map_err(wrap_err)?,
+ ))
}
- #[pyo3(text_signature = "(self, shape:Sequence[int])")]
+ #[pyo3(signature=(*shape), text_signature = "(self, *shape:Shape)")]
/// Broadcasts the tensor to the given shape, adding new dimensions on the left.
/// &RETURNS&: Tensor
- fn broadcast_left(&self, shape: PyShape) -> PyResult<Self> {
- Ok(PyTensor(self.0.broadcast_left(shape).map_err(wrap_err)?))
+ fn broadcast_left(&self, shape: PyShapeWithHole) -> PyResult<Self> {
+ Ok(PyTensor(
+ self.0
+ .broadcast_left(shape.to_absolute(&self.0)?)
+ .map_err(wrap_err)?,
+ ))
}
#[pyo3(text_signature = "(self, dim:int)")]
@@ -915,21 +914,21 @@ impl PyTensor {
}
if let Some(kwargs) = kwargs {
- if let Some(any) = kwargs.get_item("dtype") {
+ if let Ok(Some(any)) = kwargs.get_item("dtype") {
handle_duplicates(
&mut dtype,
any.extract::<PyDType>(),
"cannot specify multiple dtypes",
)?;
}
- if let Some(any) = kwargs.get_item("device") {
+ if let Ok(Some(any)) = kwargs.get_item("device") {
handle_duplicates(
&mut device,
any.extract::<PyDevice>(),
"cannot specify multiple devices",
)?;
}
- if let Some(any) = kwargs.get_item("other") {
+ if let Ok(Some(any)) = kwargs.get_item("other") {
handle_duplicates(
&mut other,
any.extract::<PyTensor>(),
@@ -1049,27 +1048,27 @@ fn tensor(py: Python<'_>, data: PyObject) -> PyResult<PyTensor> {
}
#[pyfunction]
-#[pyo3(signature = (shape, *, device=None), text_signature = "(shape:Sequence[int], device:Optional[Device]=None)")]
+#[pyo3(signature = (*shape,device=None), text_signature = "(*shape:Shape, device:Optional[Device]=None)")]
/// Creates a new tensor with random values.
/// &RETURNS&: Tensor
fn rand(_py: Python<'_>, shape: PyShape, device: Option<PyDevice>) -> PyResult<PyTensor> {
let device = device.unwrap_or(PyDevice::Cpu).as_device()?;
- let tensor = Tensor::rand(0f32, 1f32, shape.0, &device).map_err(wrap_err)?;
+ let tensor = Tensor::rand(0f32, 1f32, shape, &device).map_err(wrap_err)?;
Ok(PyTensor(tensor))
}
#[pyfunction]
-#[pyo3(signature = (shape, *, device=None), text_signature = "(shape:Sequence[int], device:Optional[Device]=None)")]
+#[pyo3(signature = (*shape,device=None), text_signature = "(*shape:Shape, device:Optional[Device]=None)")]
/// Creates a new tensor with random values from a normal distribution.
/// &RETURNS&: Tensor
fn randn(_py: Python<'_>, shape: PyShape, device: Option<PyDevice>) -> PyResult<PyTensor> {
let device = device.unwrap_or(PyDevice::Cpu).as_device()?;
- let tensor = Tensor::randn(0f32, 1f32, shape.0, &device).map_err(wrap_err)?;
+ let tensor = Tensor::randn(0f32, 1f32, shape, &device).map_err(wrap_err)?;
Ok(PyTensor(tensor))
}
#[pyfunction]
-#[pyo3(signature = (shape, *, dtype=None, device=None),text_signature = "(shape:Sequence[int], dtype:Optional[DType]=None, device:Optional[Device]=None)")]
+#[pyo3(signature = (*shape, dtype=None, device=None),text_signature = "(*shape:Shape, dtype:Optional[DType]=None, device:Optional[Device]=None)")]
/// Creates a new tensor filled with ones.
/// &RETURNS&: Tensor
fn ones(
@@ -1083,12 +1082,12 @@ fn ones(
Some(dtype) => PyDType::from_pyobject(dtype, py)?.0,
};
let device = device.unwrap_or(PyDevice::Cpu).as_device()?;
- let tensor = Tensor::ones(shape.0, dtype, &device).map_err(wrap_err)?;
+ let tensor = Tensor::ones(shape, dtype, &device).map_err(wrap_err)?;
Ok(PyTensor(tensor))
}
#[pyfunction]
-#[pyo3(signature = (shape, *, dtype=None, device=None), text_signature = "(shape:Sequence[int], dtype:Optional[DType]=None, device:Optional[Device]=None)")]
+#[pyo3(signature = (*shape, dtype=None, device=None), text_signature = "(*shape:Shape, dtype:Optional[DType]=None, device:Optional[Device]=None)")]
/// Creates a new tensor filled with zeros.
/// &RETURNS&: Tensor
fn zeros(
@@ -1102,7 +1101,7 @@ fn zeros(
Some(dtype) => PyDType::from_pyobject(dtype, py)?.0,
};
let device = device.unwrap_or(PyDevice::Cpu).as_device()?;
- let tensor = Tensor::zeros(shape.0, dtype, &device).map_err(wrap_err)?;
+ let tensor = Tensor::zeros(shape, dtype, &device).map_err(wrap_err)?;
Ok(PyTensor(tensor))
}