summaryrefslogtreecommitdiff
path: root/candle-transformers/src/models/bigcode.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-transformers/src/models/bigcode.rs')
-rw-r--r--candle-transformers/src/models/bigcode.rs359
1 files changed, 359 insertions, 0 deletions
diff --git a/candle-transformers/src/models/bigcode.rs b/candle-transformers/src/models/bigcode.rs
new file mode 100644
index 00000000..1e63956b
--- /dev/null
+++ b/candle-transformers/src/models/bigcode.rs
@@ -0,0 +1,359 @@
+use candle::{DType, Device, IndexOp, Result, Tensor, D};
+use candle_nn::{Embedding, LayerNorm, Linear, Module, VarBuilder};
+
+fn linear(size1: usize, size2: usize, bias: bool, vb: VarBuilder) -> Result<Linear> {
+ let weight = vb.get((size2, size1), "weight")?;
+ let bias = if bias {
+ Some(vb.get(size2, "bias")?)
+ } else {
+ None
+ };
+ Ok(Linear::new(weight, bias))
+}
+
+fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
+ let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
+ Ok(Embedding::new(embeddings, hidden_size))
+}
+
+fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
+ let weight = vb.get(size, "weight")?;
+ let bias = vb.get(size, "bias")?;
+ Ok(LayerNorm::new(weight, bias, eps))
+}
+
+fn make_causal_mask(t: usize, device: &Device) -> Result<Tensor> {
+ let mask: Vec<_> = (0..t)
+ .flat_map(|i| (0..t).map(move |j| u8::from(j <= i)))
+ .collect();
+ let mask = Tensor::from_slice(&mask, (t, t), device)?;
+ Ok(mask)
+}
+
+#[derive(Debug)]
+pub struct Config {
+ pub vocab_size: usize,
+ // max_position_embeddings aka n_positions
+ pub max_position_embeddings: usize,
+ // num_hidden_layers aka n_layer
+ pub num_hidden_layers: usize,
+ // hidden_size aka n_embd
+ pub hidden_size: usize,
+ pub layer_norm_epsilon: f64,
+ pub n_inner: Option<usize>,
+ // num_attention_heads aka n_head
+ pub num_attention_heads: usize,
+ pub multi_query: bool,
+ pub use_cache: bool,
+}
+
+impl Config {
+ #[allow(dead_code)]
+ pub fn starcoder_1b() -> Self {
+ Self {
+ vocab_size: 49152,
+ max_position_embeddings: 8192,
+ num_hidden_layers: 24,
+ hidden_size: 2048,
+ layer_norm_epsilon: 1e-5,
+ n_inner: Some(8192),
+ num_attention_heads: 16,
+ multi_query: true,
+ use_cache: true,
+ }
+ }
+
+ #[allow(dead_code)]
+ pub fn starcoder_3b() -> Self {
+ Self {
+ vocab_size: 49152,
+ max_position_embeddings: 8192,
+ num_hidden_layers: 36,
+ hidden_size: 2816,
+ layer_norm_epsilon: 1e-5,
+ n_inner: Some(11264),
+ num_attention_heads: 22,
+ multi_query: true,
+ use_cache: true,
+ }
+ }
+
+ #[allow(dead_code)]
+ pub fn starcoder_7b() -> Self {
+ Self {
+ vocab_size: 49152,
+ max_position_embeddings: 8192,
+ num_hidden_layers: 42,
+ hidden_size: 4096,
+ layer_norm_epsilon: 1e-5,
+ n_inner: Some(16384),
+ num_attention_heads: 32,
+ multi_query: true,
+ use_cache: true,
+ }
+ }
+
+ #[allow(dead_code)]
+ pub fn starcoder() -> Self {
+ Self {
+ vocab_size: 49152,
+ max_position_embeddings: 8192,
+ num_hidden_layers: 40,
+ hidden_size: 6144,
+ layer_norm_epsilon: 1e-5,
+ n_inner: Some(24576),
+ num_attention_heads: 48,
+ multi_query: true,
+ use_cache: true,
+ }
+ }
+}
+
+struct Attention {
+ c_attn: Linear,
+ c_proj: Linear,
+ kv_cache: Option<Tensor>,
+ use_cache: bool,
+ embed_dim: usize,
+ kv_dim: usize,
+ num_heads: usize,
+ head_dim: usize,
+ multi_query: bool,
+}
+
+impl Attention {
+ pub fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let hidden_size = cfg.hidden_size;
+ let head_dim = hidden_size / cfg.num_attention_heads;
+ let kv_heads = if cfg.multi_query {
+ 1
+ } else {
+ cfg.num_attention_heads
+ };
+ let kv_dim = kv_heads * head_dim;
+ let c_attn = linear(hidden_size, hidden_size + 2 * kv_dim, true, vb.pp("c_attn"))?;
+ let c_proj = linear(hidden_size, hidden_size, true, vb.pp("c_proj"))?;
+ Ok(Self {
+ c_proj,
+ c_attn,
+ embed_dim: hidden_size,
+ kv_cache: None,
+ use_cache: cfg.use_cache,
+ kv_dim,
+ head_dim,
+ num_heads: cfg.num_attention_heads,
+ multi_query: cfg.multi_query,
+ })
+ }
+
+ fn attn(
+ &self,
+ query: &Tensor,
+ key: &Tensor,
+ value: &Tensor,
+ attention_mask: &Tensor,
+ ) -> Result<Tensor> {
+ if query.dtype() != DType::F32 {
+ // If we start supporting f16 models, we may need the upcasting scaling bits.
+ // https://github.com/huggingface/transformers/blob/a0042379269bea9182c1f87e6b2eee4ba4c8cce8/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py#L133
+ candle::bail!("upcasting is not supported {:?}", query.dtype())
+ }
+ let scale_factor = 1f64 / (self.head_dim as f64).sqrt();
+ let initial_query_shape = query.shape();
+ let key_len = key.dim(D::Minus1)?;
+ let (query, key, attn_shape, attn_view) = if self.multi_query {
+ let (b_sz, query_len, _) = query.dims3()?;
+ let query = query.reshape((b_sz, query_len * self.num_heads, self.head_dim))?;
+ let attn_shape = (b_sz, query_len, self.num_heads, key_len);
+ let attn_view = (b_sz, query_len * self.num_heads, key_len);
+ (query, key.clone(), attn_shape, attn_view)
+ } else {
+ let (b_sz, _num_heads, query_len, _head_dim) = query.dims4()?;
+ let query = query.reshape((b_sz, query_len * self.num_heads, self.head_dim))?;
+ let key = key.reshape((b_sz * self.num_heads, self.head_dim, key_len))?;
+ let attn_shape = (b_sz, self.num_heads, query_len, key_len);
+ let attn_view = (b_sz * self.num_heads, query_len, key_len);
+ (query, key, attn_shape, attn_view)
+ };
+
+ let attn_weights =
+ (query.matmul(&key.contiguous()?)? * scale_factor)?.reshape(attn_shape)?;
+ let attention_mask = attention_mask.broadcast_as(attn_shape)?;
+ let mask_value =
+ Tensor::new(f32::NEG_INFINITY, query.device())?.broadcast_as(attn_shape)?;
+ let attn_weights = attention_mask.where_cond(&attn_weights, &mask_value)?;
+ let attn_weights = candle_nn::ops::softmax(&attn_weights, D::Minus1)?;
+ let value = value.contiguous()?;
+ let attn_output = if self.multi_query {
+ attn_weights
+ .reshape(attn_view)?
+ .matmul(&value)?
+ .reshape(initial_query_shape)?
+ } else {
+ attn_weights.matmul(&value)?
+ };
+ Ok(attn_output)
+ }
+
+ fn forward(&mut self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
+ let qkv = self.c_attn.forward(hidden_states)?;
+ let (query, key_value) = if self.multi_query {
+ let query = qkv.i((.., .., ..self.embed_dim))?;
+ let key_value = qkv.i((.., .., self.embed_dim..self.embed_dim + 2 * self.kv_dim))?;
+ (query, key_value)
+ } else {
+ let mut dims = qkv.dims().to_vec();
+ dims.pop();
+ dims.push(self.embed_dim);
+ dims.push(self.head_dim * 3);
+ let qkv = qkv.reshape(dims)?.transpose(1, 2)?;
+ let query = qkv.i((.., .., .., ..self.head_dim))?;
+ let key_value = qkv.i((.., .., .., self.head_dim..3 * self.head_dim))?;
+ (query, key_value)
+ };
+ let mut key_value = key_value;
+ if self.use_cache {
+ if let Some(kv_cache) = &self.kv_cache {
+ // TODO: we could trim the tensors to MAX_SEQ_LEN so that this would work for
+ // arbitrarily large sizes.
+ key_value = Tensor::cat(&[kv_cache, &key_value], D::Minus2)?.contiguous()?;
+ }
+ self.kv_cache = Some(key_value.clone())
+ }
+
+ let key = key_value.narrow(D::Minus1, 0, self.head_dim)?;
+ let value = key_value.narrow(D::Minus1, self.head_dim, self.head_dim)?;
+ let attn_output = self.attn(&query, &key.t()?, &value, attention_mask)?;
+ let attn_output = if self.multi_query {
+ attn_output
+ } else {
+ attn_output
+ .transpose(1, 2)?
+ .reshape(hidden_states.shape())?
+ };
+ let attn_output = self.c_proj.forward(&attn_output)?;
+ Ok(attn_output)
+ }
+}
+
+struct Mlp {
+ c_fc: Linear,
+ c_proj: Linear,
+}
+
+impl Mlp {
+ fn load(inner_dim: usize, vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let c_fc = linear(cfg.hidden_size, inner_dim, true, vb.pp("c_fc"))?;
+ let c_proj = linear(inner_dim, cfg.hidden_size, true, vb.pp("c_proj"))?;
+ Ok(Self { c_fc, c_proj })
+ }
+
+ fn forward(&mut self, hidden_states: &Tensor) -> Result<Tensor> {
+ let hidden_states = self.c_fc.forward(hidden_states)?.gelu()?;
+ let hidden_states = self.c_proj.forward(&hidden_states)?;
+ Ok(hidden_states)
+ }
+}
+
+// TODO: Add cross-attention?
+struct Block {
+ ln_1: LayerNorm,
+ attn: Attention,
+ ln_2: LayerNorm,
+ mlp: Mlp,
+}
+
+impl Block {
+ fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let hidden_size = cfg.hidden_size;
+ let inner_dim = cfg.n_inner.unwrap_or(4 * hidden_size);
+ let ln_1 = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb.pp("ln_1"))?;
+ let attn = Attention::load(vb.pp("attn"), cfg)?;
+ let ln_2 = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb.pp("ln_2"))?;
+ let mlp = Mlp::load(inner_dim, vb.pp("mlp"), cfg)?;
+ Ok(Self {
+ ln_1,
+ attn,
+ ln_2,
+ mlp,
+ })
+ }
+
+ fn forward(&mut self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
+ let residual = hidden_states;
+ let hidden_states = self.ln_1.forward(hidden_states)?;
+ let attn_outputs = self.attn.forward(&hidden_states, attention_mask)?;
+ let hidden_states = (&attn_outputs + residual)?;
+ let residual = &hidden_states;
+ let hidden_states = self.ln_2.forward(&hidden_states)?;
+ let hidden_states = self.mlp.forward(&hidden_states)?;
+ let hidden_states = (&hidden_states + residual)?;
+ Ok(hidden_states)
+ }
+}
+
+pub struct GPTBigCode {
+ wte: Embedding,
+ wpe: Embedding,
+ blocks: Vec<Block>,
+ ln_f: LayerNorm,
+ lm_head: Linear,
+ bias: Tensor,
+ config: Config,
+}
+
+impl GPTBigCode {
+ pub fn config(&self) -> &Config {
+ &self.config
+ }
+
+ pub fn load(vb: VarBuilder, cfg: Config) -> Result<Self> {
+ let hidden_size = cfg.hidden_size;
+ let vb_t = vb.pp("transformer");
+ let wte = embedding(cfg.vocab_size, hidden_size, vb_t.pp("wte"))?;
+ let wpe = embedding(cfg.max_position_embeddings, hidden_size, vb_t.pp("wpe"))?;
+ let blocks = (0..cfg.num_hidden_layers)
+ .map(|i| Block::load(vb_t.pp(&format!("h.{i}")), &cfg))
+ .collect::<Result<Vec<_>>>()?;
+ let ln_f = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb_t.pp("ln_f"))?;
+ let lm_head = linear(hidden_size, cfg.vocab_size, false, vb_t.pp("wte"))?;
+ let bias = make_causal_mask(cfg.max_position_embeddings, vb.device())?;
+ Ok(Self {
+ wte,
+ wpe,
+ blocks,
+ lm_head,
+ ln_f,
+ bias,
+ config: cfg,
+ })
+ }
+
+ pub fn forward(&mut self, input_ids: &Tensor, past_len: usize) -> Result<Tensor> {
+ let dev = input_ids.device();
+ let (b_sz, seq_len) = input_ids.dims2()?;
+
+ let key_len = past_len + seq_len;
+ let attention_mask = self.bias.i((past_len..key_len, ..key_len))?.unsqueeze(0)?;
+ // MQA models: (batch_size, query_length, n_heads, key_length)
+ // MHA models: (batch_size, n_heads, query_length, key_length)
+ let seq_len_dim = if self.config.multi_query { 2 } else { 1 };
+ let attention_mask = attention_mask.unsqueeze(seq_len_dim)?;
+
+ let position_ids = Tensor::arange(past_len as u32, (past_len + seq_len) as u32, dev)?;
+ let position_ids = position_ids.unsqueeze(0)?.broadcast_as((b_sz, seq_len))?;
+ let input_embeds = self.wte.forward(input_ids)?;
+ let position_embeds = self.wpe.forward(&position_ids)?;
+
+ let mut hidden_states = (&input_embeds + &position_embeds)?;
+ for block in self.blocks.iter_mut() {
+ hidden_states = block.forward(&hidden_states, &attention_mask)?;
+ }
+ let hidden_states = self.ln_f.forward(&hidden_states)?;
+ let hidden_states = hidden_states
+ .reshape((b_sz, seq_len, self.config.hidden_size))?
+ .narrow(1, seq_len - 1, 1)?;
+ let logits = self.lm_head.forward(&hidden_states)?.squeeze(1)?;
+ Ok(logits)
+ }
+}