summaryrefslogtreecommitdiff
path: root/candle-transformers/src/models/openclip/text_model.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-transformers/src/models/openclip/text_model.rs')
-rw-r--r--candle-transformers/src/models/openclip/text_model.rs266
1 files changed, 266 insertions, 0 deletions
diff --git a/candle-transformers/src/models/openclip/text_model.rs b/candle-transformers/src/models/openclip/text_model.rs
new file mode 100644
index 00000000..7b444e79
--- /dev/null
+++ b/candle-transformers/src/models/openclip/text_model.rs
@@ -0,0 +1,266 @@
+//! Text encoder as used in most OpenCLIP pretrained models
+//! https://github.com/mlfoundations/open_clip
+
+use candle::{DType, IndexOp, Result, Tensor, D};
+use candle_nn::{
+ embedding, layer_norm, linear, ops::softmax_last_dim, Embedding, LayerNorm, Linear, Module,
+ VarBuilder,
+};
+
+#[derive(Debug, Clone)]
+pub struct Config {
+ pub vocab_size: usize,
+ pub embed_dim: usize,
+ pub intermediate_size: usize,
+ pub max_position_embeddings: usize,
+ pub pad_with: Option<String>,
+ pub num_hidden_layers: usize,
+ pub num_attention_heads: usize,
+ pub projection_dim: usize,
+}
+
+impl Config {
+ pub fn vit_base_patch32() -> Self {
+ Self {
+ vocab_size: 49408,
+ embed_dim: 512,
+ intermediate_size: 2048,
+ max_position_embeddings: 77,
+ pad_with: None,
+ num_hidden_layers: 12,
+ num_attention_heads: 8,
+ projection_dim: 512,
+ }
+ }
+}
+
+#[derive(Clone, Debug)]
+struct TextEmbeddings {
+ token_embedding: Embedding,
+ position_embedding: Tensor,
+}
+
+impl TextEmbeddings {
+ fn new(vs: VarBuilder, c: &Config) -> Result<Self> {
+ let token_embedding = embedding(c.vocab_size, c.embed_dim, vs.pp("token_embedding"))?;
+ let position_embedding = vs.get(
+ (c.max_position_embeddings, c.embed_dim),
+ "positional_embedding",
+ )?;
+ Ok(TextEmbeddings {
+ token_embedding,
+ position_embedding,
+ })
+ }
+}
+
+impl Module for TextEmbeddings {
+ fn forward(&self, input_ids: &Tensor) -> Result<Tensor> {
+ let seq_length = input_ids.dim(D::Minus1)?;
+ let inputs_embeds = self.token_embedding.forward(input_ids)?;
+
+ let position_embedding = self.position_embedding.narrow(0, 0, seq_length)?;
+
+ inputs_embeds.broadcast_add(&position_embedding)
+ }
+}
+
+#[derive(Clone, Debug)]
+struct Attention {
+ k_proj: candle_nn::Linear,
+ v_proj: candle_nn::Linear,
+ q_proj: candle_nn::Linear,
+ out_proj: Linear,
+ head_dim: usize,
+ scale: f64,
+ num_attention_heads: usize,
+}
+
+impl Attention {
+ fn new(vs: candle_nn::VarBuilder, c: &Config) -> Result<Self> {
+ let embed_dim = c.embed_dim;
+ let num_attention_heads = c.num_attention_heads;
+
+ let in_proj_weights = vs
+ .get((embed_dim * 3, embed_dim), "in_proj_weight")?
+ .chunk(3, 0)?;
+ let (q_w, k_w, v_w) = (
+ &in_proj_weights[0],
+ &in_proj_weights[1],
+ &in_proj_weights[2],
+ );
+ let in_proj_biases = vs.get(embed_dim * 3, "in_proj_bias")?.chunk(3, 0)?;
+ let (q_b, k_b, v_b) = (&in_proj_biases[0], &in_proj_biases[1], &in_proj_biases[2]);
+
+ let q_proj = Linear::new(q_w.clone(), Some(q_b.clone()));
+ let k_proj = Linear::new(k_w.clone(), Some(k_b.clone()));
+ let v_proj = Linear::new(v_w.clone(), Some(v_b.clone()));
+ let out_proj = candle_nn::linear(embed_dim, embed_dim, vs.pp("out_proj"))?;
+ let head_dim = embed_dim / num_attention_heads;
+ let scale = (head_dim as f64).powf(-0.5);
+
+ Ok(Attention {
+ k_proj,
+ v_proj,
+ q_proj,
+ out_proj,
+ head_dim,
+ scale,
+ num_attention_heads,
+ })
+ }
+
+ fn shape_multihead(&self, xs: &Tensor, bsz: usize, seq_len: usize) -> Result<Tensor> {
+ xs.reshape((bsz, seq_len, self.num_attention_heads, self.head_dim))?
+ .transpose(1, 2)?
+ .contiguous()?
+ .to_dtype(DType::F32)
+ }
+
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let in_dtype = xs.dtype();
+ let (bsz, seq_len, embed_dim) = xs.dims3()?;
+
+ let q = self.shape_multihead(&self.q_proj.forward(xs)?, bsz, seq_len)?;
+ let k = self.shape_multihead(&self.k_proj.forward(xs)?, bsz, seq_len)?;
+ let v = self.shape_multihead(&self.v_proj.forward(xs)?, bsz, seq_len)?;
+ let q = (q * self.scale)?;
+
+ let attn_weights = q.matmul(&k.transpose(D::Minus1, D::Minus2)?)?;
+
+ let attn_weights = softmax_last_dim(&attn_weights)?;
+
+ let attn_output = attn_weights.matmul(&v)?.to_dtype(in_dtype)?;
+ let attn_output = attn_output
+ .transpose(1, 2)?
+ .contiguous()?
+ .reshape((bsz, seq_len, embed_dim))?;
+ let out = self.out_proj.forward(&attn_output)?;
+ Ok(out)
+ }
+}
+
+#[derive(Clone, Debug)]
+struct Mlp {
+ fc1: Linear,
+ fc2: Linear,
+}
+
+impl Mlp {
+ fn new(vs: VarBuilder, c: &Config) -> Result<Self> {
+ let fc1 = linear(c.embed_dim, c.intermediate_size, vs.pp("c_fc"))?;
+ let fc2 = linear(c.intermediate_size, c.embed_dim, vs.pp("c_proj"))?;
+
+ Ok(Mlp { fc1, fc2 })
+ }
+}
+
+impl Mlp {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let xs = self.fc1.forward(xs)?;
+ self.fc2.forward(&xs.gelu_erf()?)
+ }
+}
+
+#[derive(Clone, Debug)]
+struct EncoderLayer {
+ self_attn: Attention,
+ layer_norm1: LayerNorm,
+ mlp: Mlp,
+ layer_norm2: LayerNorm,
+}
+
+impl EncoderLayer {
+ fn new(vs: VarBuilder, c: &Config) -> Result<Self> {
+ let self_attn = Attention::new(vs.pp("attn"), c)?;
+ let layer_norm1 = layer_norm(c.embed_dim, 1e-5, vs.pp("ln_1"))?;
+ let mlp = Mlp::new(vs.pp("mlp"), c)?;
+ let layer_norm2 = layer_norm(c.embed_dim, 1e-5, vs.pp("ln_2"))?;
+
+ Ok(EncoderLayer {
+ self_attn,
+ layer_norm1,
+ mlp,
+ layer_norm2,
+ })
+ }
+
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let residual = xs;
+ let xs = self.layer_norm1.forward(xs)?;
+ let xs = self.self_attn.forward(&xs)?;
+ let xs = (xs + residual)?;
+
+ let residual = &xs;
+ let xs = self.layer_norm2.forward(&xs)?;
+ let xs = self.mlp.forward(&xs)?;
+ let out = (xs + residual)?;
+ Ok(out)
+ }
+}
+
+#[derive(Clone, Debug)]
+pub struct Encoder {
+ layers: Vec<EncoderLayer>,
+}
+
+impl Encoder {
+ pub fn new(vs: VarBuilder, c: &Config) -> Result<Self> {
+ let vs = vs.pp("resblocks");
+ let mut layers: Vec<EncoderLayer> = Vec::new();
+ for index in 0..c.num_hidden_layers {
+ let layer = EncoderLayer::new(vs.pp(index.to_string()), c)?;
+ layers.push(layer)
+ }
+ Ok(Encoder { layers })
+ }
+
+ pub fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let mut xs = xs.clone();
+ for layer in self.layers.iter() {
+ xs = layer.forward(&xs)?;
+ }
+ Ok(xs)
+ }
+}
+
+/// A text transformer as used in CLIP variants.
+#[derive(Clone, Debug)]
+pub struct OpenClipTextTransformer {
+ embeddings: TextEmbeddings,
+ encoder: Encoder,
+ final_layer_norm: LayerNorm,
+}
+
+impl OpenClipTextTransformer {
+ pub fn new(vs: VarBuilder, c: &Config) -> Result<Self> {
+ let embeddings = TextEmbeddings::new(vs.clone(), c)?;
+ let final_layer_norm = layer_norm(c.embed_dim, 1e-5, vs.pp("ln_final"))?;
+ let encoder = Encoder::new(vs.pp("transformer"), c)?;
+ Ok(OpenClipTextTransformer {
+ embeddings,
+ encoder,
+ final_layer_norm,
+ })
+ }
+
+ pub fn forward(&self, input_ids: &Tensor) -> Result<Tensor> {
+ let input_ids = self.embeddings.forward(input_ids)?;
+ let input_ids = self.encoder.forward(&input_ids)?;
+ self.final_layer_norm.forward(&input_ids)
+ }
+}
+
+impl Module for OpenClipTextTransformer {
+ fn forward(&self, input_ids: &Tensor) -> Result<Tensor> {
+ let output = self.forward(input_ids)?;
+ let sequence_max_indices = input_ids.argmax(D::Minus1)?.to_dtype(DType::I64)?;
+
+ let mut indices = Vec::new();
+ for (batch_idx, &seq_idx) in sequence_max_indices.to_vec1::<i64>()?.iter().enumerate() {
+ let index = output.i((batch_idx, seq_idx as usize))?.unsqueeze(0)?;
+ indices.push(index);
+ }
+ Tensor::cat(&indices, 0)
+ }
+}