summaryrefslogtreecommitdiff
path: root/candle-transformers/src/models/segment_anything/prompt_encoder.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-transformers/src/models/segment_anything/prompt_encoder.rs')
-rw-r--r--candle-transformers/src/models/segment_anything/prompt_encoder.rs239
1 files changed, 239 insertions, 0 deletions
diff --git a/candle-transformers/src/models/segment_anything/prompt_encoder.rs b/candle-transformers/src/models/segment_anything/prompt_encoder.rs
new file mode 100644
index 00000000..9d0074b1
--- /dev/null
+++ b/candle-transformers/src/models/segment_anything/prompt_encoder.rs
@@ -0,0 +1,239 @@
+use candle::{DType, IndexOp, Result, Tensor, D};
+use candle_nn::VarBuilder;
+
+#[derive(Debug)]
+struct PostionEmbeddingRandom {
+ positional_encoding_gaussian_matrix: Tensor,
+}
+
+impl PostionEmbeddingRandom {
+ fn new(num_pos_feats: usize, vb: VarBuilder) -> Result<Self> {
+ let positional_encoding_gaussian_matrix =
+ vb.get((2, num_pos_feats), "positional_encoding_gaussian_matrix")?;
+ Ok(Self {
+ positional_encoding_gaussian_matrix,
+ })
+ }
+
+ fn pe_encoding(&self, coords: &Tensor) -> Result<Tensor> {
+ let coords = coords.affine(2., -1.)?;
+ let coords = coords.broadcast_matmul(&self.positional_encoding_gaussian_matrix)?;
+ let coords = (coords * (2. * std::f64::consts::PI))?;
+ Tensor::cat(&[coords.sin()?, coords.cos()?], D::Minus1)
+ }
+
+ fn forward(&self, h: usize, w: usize) -> Result<Tensor> {
+ let device = self.positional_encoding_gaussian_matrix.device();
+ let x_embed = (Tensor::arange(0u32, w as u32, device)?.to_dtype(DType::F32)? + 0.5)?;
+ let y_embed = (Tensor::arange(0u32, h as u32, device)?.to_dtype(DType::F32)? + 0.5)?;
+ let x_embed = (x_embed / w as f64)?
+ .reshape((1, ()))?
+ .broadcast_as((h, w))?;
+ let y_embed = (y_embed / h as f64)?
+ .reshape(((), 1))?
+ .broadcast_as((h, w))?;
+ let coords = Tensor::stack(&[&x_embed, &y_embed], D::Minus1)?;
+ self.pe_encoding(&coords)?.permute((2, 0, 1))
+ }
+
+ fn forward_with_coords(
+ &self,
+ coords_input: &Tensor,
+ image_size: (usize, usize),
+ ) -> Result<Tensor> {
+ let coords0 = (coords_input.narrow(D::Minus1, 0, 1)? / image_size.1 as f64)?;
+ let coords1 = (coords_input.narrow(D::Minus1, 1, 1)? / image_size.0 as f64)?;
+ let c = coords_input.dim(D::Minus1)?;
+ let coords_rest = coords_input.narrow(D::Minus1, 2, c - 2)?;
+ let coords = Tensor::cat(&[&coords0, &coords1, &coords_rest], D::Minus1)?;
+ self.pe_encoding(&coords)
+ }
+}
+
+#[derive(Debug)]
+pub struct PromptEncoder {
+ pe_layer: PostionEmbeddingRandom,
+ point_embeddings: Vec<candle_nn::Embedding>,
+ not_a_point_embed: candle_nn::Embedding,
+ mask_downscaling_conv1: candle_nn::Conv2d,
+ mask_downscaling_ln1: super::LayerNorm2d,
+ mask_downscaling_conv2: candle_nn::Conv2d,
+ mask_downscaling_ln2: super::LayerNorm2d,
+ mask_downscaling_conv3: candle_nn::Conv2d,
+ no_mask_embed: candle_nn::Embedding,
+ image_embedding_size: (usize, usize),
+ input_image_size: (usize, usize),
+ embed_dim: usize,
+ span: tracing::Span,
+}
+
+impl PromptEncoder {
+ pub fn new(
+ embed_dim: usize,
+ image_embedding_size: (usize, usize),
+ input_image_size: (usize, usize),
+ mask_in_chans: usize,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let num_points_embeddings = 4;
+ let pe_layer = PostionEmbeddingRandom::new(embed_dim / 2, vb.pp("pe_layer"))?;
+ let not_a_point_embed = candle_nn::embedding(1, embed_dim, vb.pp("not_a_point_embed"))?;
+ let no_mask_embed = candle_nn::embedding(1, embed_dim, vb.pp("no_mask_embed"))?;
+ let cfg = candle_nn::Conv2dConfig {
+ stride: 2,
+ ..Default::default()
+ };
+ let mask_downscaling_conv1 =
+ candle_nn::conv2d(1, mask_in_chans / 4, 2, cfg, vb.pp("mask_downscaling.0"))?;
+ let mask_downscaling_conv2 = candle_nn::conv2d(
+ mask_in_chans / 4,
+ mask_in_chans,
+ 2,
+ cfg,
+ vb.pp("mask_downscaling.3"),
+ )?;
+ let mask_downscaling_conv3 = candle_nn::conv2d(
+ mask_in_chans,
+ embed_dim,
+ 1,
+ Default::default(),
+ vb.pp("mask_downscaling.6"),
+ )?;
+ let mask_downscaling_ln1 =
+ super::LayerNorm2d::new(mask_in_chans / 4, 1e-6, vb.pp("mask_downscaling.1"))?;
+ let mask_downscaling_ln2 =
+ super::LayerNorm2d::new(mask_in_chans, 1e-6, vb.pp("mask_downscaling.4"))?;
+ let mut point_embeddings = Vec::with_capacity(num_points_embeddings);
+ let vb_e = vb.pp("point_embeddings");
+ for i in 0..num_points_embeddings {
+ let emb = candle_nn::embedding(1, embed_dim, vb_e.pp(i))?;
+ point_embeddings.push(emb)
+ }
+ let span = tracing::span!(tracing::Level::TRACE, "prompt-encoder");
+ Ok(Self {
+ pe_layer,
+ point_embeddings,
+ not_a_point_embed,
+ mask_downscaling_conv1,
+ mask_downscaling_ln1,
+ mask_downscaling_conv2,
+ mask_downscaling_ln2,
+ mask_downscaling_conv3,
+ no_mask_embed,
+ image_embedding_size,
+ input_image_size,
+ embed_dim,
+ span,
+ })
+ }
+
+ pub fn get_dense_pe(&self) -> Result<Tensor> {
+ self.pe_layer
+ .forward(self.image_embedding_size.0, self.image_embedding_size.1)?
+ .unsqueeze(0)
+ }
+
+ fn embed_masks(&self, masks: &Tensor) -> Result<Tensor> {
+ masks
+ .apply(&self.mask_downscaling_conv1)?
+ .apply(&self.mask_downscaling_ln1)?
+ .gelu()?
+ .apply(&self.mask_downscaling_conv2)?
+ .apply(&self.mask_downscaling_ln2)?
+ .gelu()?
+ .apply(&self.mask_downscaling_conv3)
+ }
+
+ fn embed_points(&self, points: &Tensor, labels: &Tensor, pad: bool) -> Result<Tensor> {
+ let points = (points + 0.5)?;
+ let dev = points.device();
+ let (points, labels) = if pad {
+ let padding_point = Tensor::zeros((points.dim(0)?, 1, 2), DType::F32, dev)?;
+ let padding_label = (Tensor::ones((labels.dim(0)?, 1), DType::F32, dev)? * (-1f64))?;
+ let points = Tensor::cat(&[&points, &padding_point], 1)?;
+ let labels = Tensor::cat(&[labels, &padding_label], 1)?;
+ (points, labels)
+ } else {
+ (points, labels.clone())
+ };
+ let point_embedding = self
+ .pe_layer
+ .forward_with_coords(&points, self.input_image_size)?;
+ let labels = labels.unsqueeze(2)?.broadcast_as(point_embedding.shape())?;
+ let zeros = point_embedding.zeros_like()?;
+ let point_embedding = labels.lt(0f32)?.where_cond(
+ &self
+ .not_a_point_embed
+ .embeddings()
+ .broadcast_as(zeros.shape())?,
+ &point_embedding,
+ )?;
+ let labels0 = labels.eq(0f32)?.where_cond(
+ &self.point_embeddings[0]
+ .embeddings()
+ .broadcast_as(zeros.shape())?,
+ &zeros,
+ )?;
+ let point_embedding = (point_embedding + labels0)?;
+ let labels1 = labels.eq(1f32)?.where_cond(
+ &self.point_embeddings[1]
+ .embeddings()
+ .broadcast_as(zeros.shape())?,
+ &zeros,
+ )?;
+ let point_embedding = (point_embedding + labels1)?;
+ Ok(point_embedding)
+ }
+
+ fn embed_boxes(&self, boxes: &Tensor) -> Result<Tensor> {
+ let boxes = (boxes + 0.5)?;
+ let coords = boxes.reshape(((), 2, 2))?;
+ let corner_embedding = self
+ .pe_layer
+ .forward_with_coords(&coords, self.input_image_size)?;
+ let ce1 = corner_embedding.i((.., 0))?;
+ let ce2 = corner_embedding.i((.., 1))?;
+ let ce1 = (ce1 + self.point_embeddings[2].embeddings())?;
+ let ce2 = (ce2 + self.point_embeddings[3].embeddings())?;
+ Tensor::cat(&[&ce1, &ce2], 1)
+ }
+
+ pub fn forward(
+ &self,
+ points: Option<(&Tensor, &Tensor)>,
+ boxes: Option<&Tensor>,
+ masks: Option<&Tensor>,
+ ) -> Result<(Tensor, Tensor)> {
+ let _enter = self.span.enter();
+ let se_points = match points {
+ Some((coords, labels)) => Some(self.embed_points(coords, labels, boxes.is_none())?),
+ None => None,
+ };
+ let se_boxes = match boxes {
+ Some(boxes) => Some(self.embed_boxes(boxes)?),
+ None => None,
+ };
+ let sparse_embeddings = match (se_points, se_boxes) {
+ (Some(se_points), Some(se_boxes)) => Tensor::cat(&[se_points, se_boxes], 1)?,
+ (Some(se_points), None) => se_points,
+ (None, Some(se_boxes)) => se_boxes,
+ (None, None) => {
+ Tensor::zeros((1, 0, self.embed_dim), DType::F32, &candle::Device::Cpu)?
+ }
+ };
+
+ let dense_embeddings = match masks {
+ None => {
+ let emb = self.no_mask_embed.embeddings();
+ emb.reshape((1, (), 1, 1))?.expand((
+ 1,
+ emb.elem_count(),
+ self.image_embedding_size.0,
+ self.image_embedding_size.1,
+ ))?
+ }
+ Some(masks) => self.embed_masks(masks)?,
+ };
+ Ok((sparse_embeddings, dense_embeddings))
+ }
+}