summaryrefslogtreecommitdiff
path: root/candle-transformers/src
diff options
context:
space:
mode:
Diffstat (limited to 'candle-transformers/src')
-rw-r--r--candle-transformers/src/models/mod.rs1
-rw-r--r--candle-transformers/src/models/xlm_roberta.rs545
2 files changed, 546 insertions, 0 deletions
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index be1f15c4..5f566991 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -109,4 +109,5 @@ pub mod vit;
pub mod whisper;
pub mod with_tracing;
pub mod wuerstchen;
+pub mod xlm_roberta;
pub mod yi;
diff --git a/candle-transformers/src/models/xlm_roberta.rs b/candle-transformers/src/models/xlm_roberta.rs
new file mode 100644
index 00000000..96e763e1
--- /dev/null
+++ b/candle-transformers/src/models/xlm_roberta.rs
@@ -0,0 +1,545 @@
+use crate::models::with_tracing::{linear, Linear};
+use candle::{DType, Module, Result, Tensor};
+use candle_nn::{
+ embedding, layer_norm, ops::softmax_last_dim, Activation, Embedding, LayerNorm, VarBuilder,
+};
+
+#[derive(Debug, Clone, serde::Deserialize)]
+pub struct Config {
+ pub hidden_size: usize,
+ pub layer_norm_eps: f64,
+ pub attention_probs_dropout_prob: f32,
+ pub hidden_dropout_prob: f32,
+ pub num_attention_heads: usize,
+ pub position_embedding_type: String,
+ pub intermediate_size: usize,
+ pub hidden_act: Activation,
+ pub num_hidden_layers: usize,
+ pub vocab_size: usize,
+ pub max_position_embeddings: usize,
+ pub type_vocab_size: usize,
+ pub pad_token_id: u32,
+}
+
+struct XLMRobertaEmbeddings {
+ word_embeddings: Embedding,
+ position_embeddings: Option<Embedding>,
+ token_type_embeddings: Embedding,
+ layer_norm: LayerNorm,
+ padding_idx: u32,
+ span: tracing::Span,
+}
+
+impl XLMRobertaEmbeddings {
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
+ let word_embeddings = embedding(
+ config.vocab_size,
+ config.hidden_size,
+ vb.pp("word_embeddings"),
+ )?;
+ let position_embeddings = embedding(
+ config.max_position_embeddings,
+ config.hidden_size,
+ vb.pp("position_embeddings"),
+ )?;
+ let token_type_embeddings = embedding(
+ config.type_vocab_size,
+ config.hidden_size,
+ vb.pp("token_type_embeddings"),
+ )?;
+ let layer_norm = layer_norm(
+ config.hidden_size,
+ config.layer_norm_eps,
+ vb.pp("LayerNorm"),
+ )?;
+ Ok(Self {
+ word_embeddings,
+ position_embeddings: Some(position_embeddings),
+ token_type_embeddings,
+ layer_norm,
+ padding_idx: config.pad_token_id,
+ span: tracing::span!(tracing::Level::TRACE, "embeddings"),
+ })
+ }
+
+ fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let (_bsize, _) = input_ids.dims2()?;
+ let input_embeddings = self.word_embeddings.forward(input_ids)?;
+ let token_type_embeddings = self.token_type_embeddings.forward(token_type_ids)?;
+ let mut embeddings = (&input_embeddings + token_type_embeddings)?;
+ if let Some(position_embeddings) = &self.position_embeddings {
+ let mask = input_ids
+ .ne(self.padding_idx)?
+ .to_dtype(input_embeddings.dtype())?;
+ let cumsum = mask.cumsum(1)?;
+ let position_ids = (cumsum * mask)?
+ .broadcast_add(
+ &Tensor::try_from(self.padding_idx)?
+ .to_dtype(input_embeddings.dtype())?
+ .to_device(input_embeddings.device())?,
+ )?
+ .to_dtype(candle::DType::U32)?;
+ embeddings = embeddings.broadcast_add(&position_embeddings.forward(&position_ids)?)?;
+ }
+ let embeddings = self.layer_norm.forward(&embeddings)?;
+ Ok(embeddings)
+ }
+}
+
+struct XLMRobertaSelfAttention {
+ num_attention_heads: usize,
+ attention_head_size: usize,
+ all_head_size: usize,
+ query: Linear,
+ key: Linear,
+ value: Linear,
+}
+
+impl XLMRobertaSelfAttention {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let attention_head_size = cfg.hidden_size / cfg.num_attention_heads;
+ let all_head_size = cfg.num_attention_heads * attention_head_size;
+ Ok(Self {
+ num_attention_heads: cfg.num_attention_heads,
+ attention_head_size,
+ all_head_size,
+ query: linear(cfg.hidden_size, all_head_size, vb.pp("query"))?,
+ key: linear(cfg.hidden_size, all_head_size, vb.pp("key"))?,
+ value: linear(cfg.hidden_size, all_head_size, vb.pp("value"))?,
+ })
+ }
+
+ fn transpose_for_scores(&self, x: &Tensor) -> Result<Tensor> {
+ let mut new_x_shape = x.dims().to_vec();
+ new_x_shape[2] = self.num_attention_heads;
+ new_x_shape.push(self.attention_head_size);
+ let x = x.reshape(new_x_shape)?;
+ x.permute((0, 2, 1, 3))?.contiguous()
+ }
+
+ fn forward(
+ &self,
+ hidden_states: &Tensor,
+ encoder_hidden_states: Option<&Tensor>,
+ attention_mask: &Tensor,
+ past_key_value: Option<(&Tensor, &Tensor)>,
+ encoder_attention_mask: Option<&Tensor>,
+ ) -> Result<Tensor> {
+ let mixed_query_layer = self.query.forward(hidden_states)?;
+ let is_cross_attention = encoder_hidden_states.is_some();
+ let (key_layer, value_layer, attention_mask) = if is_cross_attention
+ && past_key_value.is_some()
+ {
+ let key_layer = past_key_value.unwrap().0.clone();
+ let value_layer = past_key_value.unwrap().1.clone();
+ let attention_mask = encoder_attention_mask.unwrap().clone();
+ (key_layer, value_layer, Some(attention_mask))
+ } else if is_cross_attention {
+ let key_layer =
+ self.transpose_for_scores(&self.key.forward(encoder_hidden_states.unwrap())?)?;
+ let value_layer =
+ self.transpose_for_scores(&self.value.forward(encoder_hidden_states.unwrap())?)?;
+ let attention_mask = encoder_attention_mask.unwrap();
+ (key_layer, value_layer, Some(attention_mask.clone()))
+ } else if past_key_value.is_some() {
+ let mut key_layer = self.transpose_for_scores(&self.key.forward(hidden_states)?)?;
+ let mut value_layer = self.transpose_for_scores(&self.value.forward(hidden_states)?)?;
+ key_layer = Tensor::cat(
+ &[
+ past_key_value.clone().as_ref().unwrap().0.clone(),
+ key_layer,
+ ],
+ 2,
+ )?;
+ value_layer = Tensor::cat(
+ &[past_key_value.as_ref().unwrap().1.clone(), value_layer],
+ 2,
+ )?;
+ (key_layer, value_layer, Some(attention_mask.clone()))
+ } else {
+ let key_layer = self.transpose_for_scores(&self.key.forward(hidden_states)?)?;
+ let value_layer = self.transpose_for_scores(&self.value.forward(hidden_states)?)?;
+ (key_layer, value_layer, Some(attention_mask.clone()))
+ };
+
+ let query_layer = self.transpose_for_scores(&mixed_query_layer)?;
+ let mut attention_scores = query_layer.matmul(&key_layer.transpose(2, 3)?)?;
+ let scale = 1f64 / f64::sqrt(self.attention_head_size as f64);
+
+ attention_scores = (attention_scores * scale)?;
+ attention_scores = match attention_mask {
+ None => attention_scores,
+ Some(mask) => {
+ attention_scores.broadcast_add(&mask.to_dtype(attention_scores.dtype())?)?
+ }
+ };
+ let attention_probs = softmax_last_dim(&attention_scores)?;
+
+ let context_layer = attention_probs
+ .matmul(&value_layer)?
+ .permute((0, 2, 1, 3))?
+ .contiguous()?;
+ let mut new_context_layer_shape =
+ context_layer.dims()[..context_layer.dims().len() - 2].to_vec();
+ new_context_layer_shape.push(self.all_head_size);
+ let context_layer = context_layer.reshape(new_context_layer_shape)?;
+
+ Ok(context_layer)
+ }
+}
+
+struct XLMRobertaSelfOutput {
+ dense: Linear,
+ layernorm: LayerNorm,
+}
+
+impl XLMRobertaSelfOutput {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let dense = linear(cfg.hidden_size, cfg.hidden_size, vb.pp("dense"))?;
+ let layernorm =
+ candle_nn::layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb.pp("LayerNorm"))?;
+ Ok(Self { dense, layernorm })
+ }
+
+ fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
+ let hidden_states = self.dense.forward(hidden_states)?;
+ let hidden_states = self.layernorm.forward(&(hidden_states + input_tensor)?)?;
+ Ok(hidden_states)
+ }
+}
+
+struct XLMRobertaAttention {
+ output: XLMRobertaSelfOutput,
+ self_attention: XLMRobertaSelfAttention,
+}
+
+impl XLMRobertaAttention {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let output = XLMRobertaSelfOutput::new(cfg, vb.pp("output"))?;
+ let self_attention = XLMRobertaSelfAttention::new(cfg, vb.pp("self"))?;
+ Ok(Self {
+ output,
+ self_attention,
+ })
+ }
+
+ fn forward(
+ &self,
+ hidden_states: &Tensor,
+ attention_mask: &Tensor,
+ encoder_hidden_states: Option<&Tensor>,
+ encoder_attention_mask: Option<&Tensor>,
+ past_key_value: Option<(&Tensor, &Tensor)>,
+ ) -> Result<(Tensor, Tensor)> {
+ let self_outputs = self.self_attention.forward(
+ hidden_states,
+ encoder_hidden_states,
+ attention_mask,
+ past_key_value,
+ encoder_attention_mask,
+ )?;
+ let attention_output = self.output.forward(&self_outputs, hidden_states)?;
+ Ok((attention_output, self_outputs))
+ }
+}
+
+struct XLMRobertaOutput {
+ dense: Linear,
+ layernorm: LayerNorm,
+}
+
+impl XLMRobertaOutput {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let dense = linear(cfg.intermediate_size, cfg.hidden_size, vb.pp("dense"))?;
+ let layernorm =
+ candle_nn::layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb.pp("LayerNorm"))?;
+ Ok(Self { dense, layernorm })
+ }
+
+ fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
+ let hidden_states = self.dense.forward(hidden_states)?;
+ let hidden_states = self.layernorm.forward(&(hidden_states + input_tensor)?)?;
+ Ok(hidden_states)
+ }
+}
+
+struct XLMRobertaIntermediate {
+ dense: Linear,
+ intermediate_act_fn: Activation,
+}
+
+impl XLMRobertaIntermediate {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let dense = linear(cfg.hidden_size, cfg.intermediate_size, vb.pp("dense"))?;
+ let intermediate_act_fn = cfg.hidden_act;
+ Ok(Self {
+ dense,
+ intermediate_act_fn,
+ })
+ }
+
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
+ let hidden_states = self.dense.forward(hidden_states)?;
+ let hidden_states = self.intermediate_act_fn.forward(&hidden_states)?;
+ Ok(hidden_states)
+ }
+}
+
+struct XLMRobertaLayer {
+ attention: XLMRobertaAttention,
+ intermediate: XLMRobertaIntermediate,
+ output: XLMRobertaOutput,
+}
+
+impl XLMRobertaLayer {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let attention = XLMRobertaAttention::new(cfg, vb.pp("attention"))?;
+ let intermediate = XLMRobertaIntermediate::new(cfg, vb.pp("intermediate"))?;
+ let output = XLMRobertaOutput::new(cfg, vb.pp("output"))?;
+ Ok(Self {
+ attention,
+ intermediate,
+ output,
+ })
+ }
+
+ fn forward(
+ &self,
+ hidden_states: &Tensor,
+ attention_mask: &Tensor,
+ encoder_hidden_states: Option<&Tensor>,
+ encoder_attention_mask: Option<&Tensor>,
+ past_key_value: Option<(&Tensor, &Tensor)>,
+ ) -> Result<(Tensor, Tensor)> {
+ let self_attention_outputs = self.attention.forward(
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ )?;
+ let attention_output = self_attention_outputs.0;
+ let outputs = self_attention_outputs.1;
+ let intermediate_output = self.intermediate.forward(&attention_output)?;
+ let layer_output = self
+ .output
+ .forward(&intermediate_output, &attention_output)?;
+ Ok((layer_output, outputs))
+ }
+}
+
+struct XLMRobertaEncoder {
+ layers: Vec<XLMRobertaLayer>,
+}
+
+impl XLMRobertaEncoder {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let layers = (0..cfg.num_hidden_layers)
+ .map(|i| XLMRobertaLayer::new(cfg, vb.pp(format!("layer.{}", i))))
+ .collect::<Result<Vec<_>>>()?;
+ Ok(Self { layers })
+ }
+
+ fn forward(
+ &self,
+ hidden_states: &Tensor,
+ attention_mask: &Tensor,
+ encoder_hidden_states: Option<&Tensor>,
+ encoder_attention_mask: Option<&Tensor>,
+ past_key_value: Option<(&Tensor, &Tensor)>,
+ ) -> Result<Tensor> {
+ let mut hidden_states = hidden_states.clone();
+ for layer_module in self.layers.iter() {
+ let layer_outputs = layer_module.forward(
+ &hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ )?;
+ hidden_states = layer_outputs.0;
+ }
+ Ok(hidden_states)
+ }
+}
+
+pub struct XLMRobertaModel {
+ encoder: XLMRobertaEncoder,
+ embeddings: XLMRobertaEmbeddings,
+}
+
+impl XLMRobertaModel {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let encoder = XLMRobertaEncoder::new(cfg, vb.pp("encoder"))?;
+ let embeddings = XLMRobertaEmbeddings::load(vb.pp("embeddings"), cfg)?;
+ Ok(Self {
+ encoder,
+ embeddings,
+ })
+ }
+
+ pub fn forward(
+ &self,
+ input_ids: &Tensor,
+ attention_mask: &Tensor,
+ token_type_ids: &Tensor,
+ past_key_value: Option<(&Tensor, &Tensor)>,
+ encoder_hidden_states: Option<&Tensor>,
+ encoder_attention_mask: Option<&Tensor>,
+ ) -> Result<Tensor> {
+ let hidden_states = self.embeddings.forward(input_ids, token_type_ids)?;
+ let attention_mask = prepare_4d_attention_mask(attention_mask, DType::F32, None)?
+ .to_device(hidden_states.device())?;
+ let hidden_states = self.encoder.forward(
+ &hidden_states,
+ &attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ )?;
+ Ok(hidden_states)
+ }
+}
+
+struct XLMRobertaLMHead {
+ dense: Linear,
+ layer_norm: LayerNorm,
+}
+
+impl XLMRobertaLMHead {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let dense = linear(cfg.hidden_size, cfg.hidden_size, vb.pp("dense"))?;
+ let layer_norm =
+ candle_nn::layer_norm(cfg.hidden_size, cfg.layer_norm_eps, vb.pp("layer_norm"))?;
+ Ok(Self { dense, layer_norm })
+ }
+
+ fn forward(&self, hidden_states: &Tensor, shared_embeddings: &Tensor) -> Result<Tensor> {
+ let hidden_states = self.dense.forward(hidden_states)?;
+ let hidden_states = candle_nn::Activation::Gelu.forward(&hidden_states)?;
+ let hidden_states = self.layer_norm.forward(&hidden_states)?;
+ let hidden_states = hidden_states.broadcast_matmul(shared_embeddings)?;
+ Ok(hidden_states)
+ }
+}
+
+pub struct XLMRobertaForMaskedLM {
+ roberta: XLMRobertaModel,
+ lm_head: XLMRobertaLMHead,
+}
+
+impl XLMRobertaForMaskedLM {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let roberta = XLMRobertaModel::new(cfg, vb.pp("roberta"))?;
+ let lm_head = XLMRobertaLMHead::new(cfg, vb.pp("lm_head"))?;
+ Ok(Self { roberta, lm_head })
+ }
+
+ pub fn forward(
+ &self,
+ input_ids: &Tensor,
+ attention_mask: &Tensor,
+ token_type_ids: &Tensor,
+ past_key_value: Option<(&Tensor, &Tensor)>,
+ encoder_hidden_states: Option<&Tensor>,
+ encoder_attention_mask: Option<&Tensor>,
+ ) -> Result<Tensor> {
+ let hidden_states = self.roberta.forward(
+ input_ids,
+ attention_mask,
+ token_type_ids,
+ past_key_value,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ )?;
+ let lm_logits = self.lm_head.forward(
+ &hidden_states,
+ &self
+ .roberta
+ .embeddings
+ .word_embeddings
+ .embeddings()
+ .t()?
+ .unsqueeze(0)?,
+ )?;
+ Ok(lm_logits)
+ }
+}
+
+struct XLMRobertaClassificationHead {
+ dense: Linear,
+ out_proj: Linear,
+}
+
+impl XLMRobertaClassificationHead {
+ fn new(num_labels: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let dense = linear(cfg.hidden_size, cfg.hidden_size, vb.pp("dense"))?;
+ let out_proj = linear(cfg.hidden_size, num_labels, vb.pp("out_proj"))?;
+ Ok(Self { dense, out_proj })
+ }
+
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
+ let cls_states = hidden_states.get_on_dim(1, 0)?.contiguous()?;
+ let hidden_states = self.dense.forward(&cls_states)?;
+ let hidden_states = candle_nn::Activation::GeluPytorchTanh.forward(&hidden_states)?;
+ let hidden_states = self.out_proj.forward(&hidden_states)?;
+ Ok(hidden_states)
+ }
+}
+
+pub struct XLMRobertaForSequenceClassification {
+ roberta: XLMRobertaModel,
+ classifier: XLMRobertaClassificationHead,
+}
+
+impl XLMRobertaForSequenceClassification {
+ pub fn new(num_labels: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let roberta = XLMRobertaModel::new(cfg, vb.pp("roberta"))?;
+ let classifier = XLMRobertaClassificationHead::new(num_labels, cfg, vb.pp("classifier"))?;
+ Ok(Self {
+ roberta,
+ classifier,
+ })
+ }
+
+ pub fn forward(
+ &self,
+ input_ids: &Tensor,
+ attention_mask: &Tensor,
+ token_type_ids: &Tensor,
+ ) -> Result<Tensor> {
+ let hidden_states =
+ self.roberta
+ .forward(input_ids, attention_mask, token_type_ids, None, None, None)?;
+ self.classifier.forward(&hidden_states)
+ }
+}
+
+fn prepare_4d_attention_mask(
+ mask: &Tensor,
+ dtype: DType,
+ tgt_len: Option<usize>,
+) -> Result<Tensor> {
+ let bsz = mask.dim(0)?;
+ let src_len = mask.dim(1)?;
+ let tgt_len = tgt_len.unwrap_or(src_len);
+
+ let expanded_mask = mask
+ .unsqueeze(1)?
+ .unsqueeze(2)?
+ .expand((bsz, 1, tgt_len, src_len))?
+ .to_dtype(dtype)?;
+
+ let inverted_mask = (1.0 - expanded_mask)?;
+
+ (inverted_mask * get_dtype_min_val(dtype))?.to_dtype(dtype)
+}
+
+fn get_dtype_min_val(dtype: DType) -> f64 {
+ match dtype {
+ DType::F32 => f32::MIN as f64,
+ DType::F64 => f64::MIN,
+ _ => panic!("Unsupported data type"),
+ }
+}