summaryrefslogtreecommitdiff
path: root/candle-wasm-examples/yolo/src/model.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-wasm-examples/yolo/src/model.rs')
-rw-r--r--candle-wasm-examples/yolo/src/model.rs207
1 files changed, 192 insertions, 15 deletions
diff --git a/candle-wasm-examples/yolo/src/model.rs b/candle-wasm-examples/yolo/src/model.rs
index 60bcbb41..a63c6e94 100644
--- a/candle-wasm-examples/yolo/src/model.rs
+++ b/candle-wasm-examples/yolo/src/model.rs
@@ -445,6 +445,13 @@ struct DetectionHead {
no: usize,
}
+#[derive(Debug)]
+struct PoseHead {
+ detect: DetectionHead,
+ cv4: [(ConvBlock, ConvBlock, Conv2d); 3],
+ kpt: (usize, usize),
+}
+
fn make_anchors(
xs0: &Tensor,
xs1: &Tensor,
@@ -475,6 +482,13 @@ fn make_anchors(
let stride_tensor = Tensor::cat(stride_tensor.as_slice(), 0)?.unsqueeze(1)?;
Ok((anchor_points, stride_tensor))
}
+
+struct DetectionHeadOut {
+ pred: Tensor,
+ anchors: Tensor,
+ strides: Tensor,
+}
+
fn dist2bbox(distance: &Tensor, anchor_points: &Tensor) -> Result<Tensor> {
let chunks = distance.chunk(2, 1)?;
let lt = &chunks[0];
@@ -536,7 +550,7 @@ impl DetectionHead {
Ok((block0, block1, conv))
}
- fn forward(&self, xs0: &Tensor, xs1: &Tensor, xs2: &Tensor) -> Result<Tensor> {
+ fn forward(&self, xs0: &Tensor, xs1: &Tensor, xs2: &Tensor) -> Result<DetectionHeadOut> {
let forward_cv = |xs, i: usize| {
let xs_2 = self.cv2[i].0.forward(xs)?;
let xs_2 = self.cv2[i].1.forward(&xs_2)?;
@@ -552,7 +566,7 @@ impl DetectionHead {
let xs2 = forward_cv(xs2, 2)?;
let (anchors, strides) = make_anchors(&xs0, &xs1, &xs2, (8, 16, 32), 0.5)?;
- let anchors = anchors.transpose(0, 1)?;
+ let anchors = anchors.transpose(0, 1)?.unsqueeze(0)?;
let strides = strides.transpose(0, 1)?;
let reshape = |xs: &Tensor| {
@@ -568,9 +582,70 @@ impl DetectionHead {
let box_ = x_cat.i((.., ..self.ch * 4))?;
let cls = x_cat.i((.., self.ch * 4..))?;
- let dbox = dist2bbox(&self.dfl.forward(&box_)?, &anchors.unsqueeze(0)?)?;
+ let dbox = dist2bbox(&self.dfl.forward(&box_)?, &anchors)?;
let dbox = dbox.broadcast_mul(&strides)?;
- Tensor::cat(&[dbox, candle_nn::ops::sigmoid(&cls)?], 1)
+ let pred = Tensor::cat(&[dbox, candle_nn::ops::sigmoid(&cls)?], 1)?;
+ Ok(DetectionHeadOut {
+ pred,
+ anchors,
+ strides,
+ })
+ }
+}
+
+impl PoseHead {
+ // kpt: keypoints, (17, 3)
+ // nc: num-classes, 80
+ fn load(
+ vb: VarBuilder,
+ nc: usize,
+ kpt: (usize, usize),
+ filters: (usize, usize, usize),
+ ) -> Result<Self> {
+ let detect = DetectionHead::load(vb.clone(), nc, filters)?;
+ let nk = kpt.0 * kpt.1;
+ let c4 = usize::max(filters.0 / 4, nk);
+ let cv4 = [
+ Self::load_cv4(vb.pp("cv4.0"), c4, nk, filters.0)?,
+ Self::load_cv4(vb.pp("cv4.1"), c4, nk, filters.1)?,
+ Self::load_cv4(vb.pp("cv4.2"), c4, nk, filters.2)?,
+ ];
+ Ok(Self { detect, cv4, kpt })
+ }
+
+ fn load_cv4(
+ vb: VarBuilder,
+ c1: usize,
+ nc: usize,
+ filter: usize,
+ ) -> Result<(ConvBlock, ConvBlock, Conv2d)> {
+ let block0 = ConvBlock::load(vb.pp("0"), filter, c1, 3, 1, None)?;
+ let block1 = ConvBlock::load(vb.pp("1"), c1, c1, 3, 1, None)?;
+ let conv = conv2d(c1, nc, 1, Default::default(), vb.pp("2"))?;
+ Ok((block0, block1, conv))
+ }
+
+ fn forward(&self, xs0: &Tensor, xs1: &Tensor, xs2: &Tensor) -> Result<Tensor> {
+ let d = self.detect.forward(xs0, xs1, xs2)?;
+ let forward_cv = |xs: &Tensor, i: usize| {
+ let (b_sz, _, h, w) = xs.dims4()?;
+ let xs = self.cv4[i].0.forward(xs)?;
+ let xs = self.cv4[i].1.forward(&xs)?;
+ let xs = self.cv4[i].2.forward(&xs)?;
+ xs.reshape((b_sz, self.kpt.0 * self.kpt.1, h * w))
+ };
+ let xs0 = forward_cv(xs0, 0)?;
+ let xs1 = forward_cv(xs1, 1)?;
+ let xs2 = forward_cv(xs2, 2)?;
+ let xs = Tensor::cat(&[xs0, xs1, xs2], D::Minus1)?;
+ let (b_sz, _nk, hw) = xs.dims3()?;
+ let xs = xs.reshape((b_sz, self.kpt.0, self.kpt.1, hw))?;
+
+ let ys01 = ((xs.i((.., .., 0..2))? * 2.)?.broadcast_add(&d.anchors)? - 0.5)?
+ .broadcast_mul(&d.strides)?;
+ let ys2 = candle_nn::ops::sigmoid(&xs.i((.., .., 2..3))?)?;
+ let ys = Tensor::cat(&[ys01, ys2], 2)?.flatten(1, 2)?;
+ Tensor::cat(&[d.pred, ys], 1)
}
}
@@ -594,17 +669,54 @@ impl Module for YoloV8 {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (xs1, xs2, xs3) = self.net.forward(xs)?;
let (xs1, xs2, xs3) = self.fpn.forward(&xs1, &xs2, &xs3)?;
+ Ok(self.head.forward(&xs1, &xs2, &xs3)?.pred)
+ }
+}
+
+#[derive(Debug)]
+pub struct YoloV8Pose {
+ net: DarkNet,
+ fpn: YoloV8Neck,
+ head: PoseHead,
+}
+
+impl YoloV8Pose {
+ pub fn load(
+ vb: VarBuilder,
+ m: Multiples,
+ num_classes: usize,
+ kpt: (usize, usize),
+ ) -> Result<Self> {
+ let net = DarkNet::load(vb.pp("net"), m)?;
+ let fpn = YoloV8Neck::load(vb.pp("fpn"), m)?;
+ let head = PoseHead::load(vb.pp("head"), num_classes, kpt, m.filters())?;
+ Ok(Self { net, fpn, head })
+ }
+}
+
+impl Module for YoloV8Pose {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let (xs1, xs2, xs3) = self.net.forward(xs)?;
+ let (xs1, xs2, xs3) = self.fpn.forward(&xs1, &xs2, &xs3)?;
self.head.forward(&xs1, &xs2, &xs3)
}
}
-#[derive(Debug, Clone, Copy, serde::Serialize, serde::Deserialize)]
+#[derive(Debug, Clone, Copy, PartialEq, serde::Serialize, serde::Deserialize)]
+pub struct KeyPoint {
+ pub x: f32,
+ pub y: f32,
+ pub mask: f32,
+}
+
+#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
pub struct Bbox {
pub xmin: f32,
pub ymin: f32,
pub xmax: f32,
pub ymax: f32,
pub confidence: f32,
+ pub keypoints: Vec<KeyPoint>,
}
// Intersection over union of two bounding boxes.
@@ -619,7 +731,7 @@ fn iou(b1: &Bbox, b2: &Bbox) -> f32 {
i_area / (b1_area + b2_area - i_area)
}
-pub fn report(
+pub fn report_detect(
pred: &Tensor,
img: DynamicImage,
w: usize,
@@ -651,11 +763,32 @@ pub fn report(
xmax: pred[0] + pred[2] / 2.,
ymax: pred[1] + pred[3] / 2.,
confidence,
+ keypoints: vec![],
};
bboxes[class_index].push(bbox)
}
}
}
+
+ non_maximum_suppression(&mut bboxes, iou_threshold);
+
+ // Annotate the original image and print boxes information.
+ let (initial_h, initial_w) = (img.height() as f32, img.width() as f32);
+ let w_ratio = initial_w / w as f32;
+ let h_ratio = initial_h / h as f32;
+ for (class_index, bboxes_for_class) in bboxes.iter_mut().enumerate() {
+ for b in bboxes_for_class.iter_mut() {
+ crate::console_log!("{}: {:?}", crate::coco_classes::NAMES[class_index], b);
+ b.xmin = (b.xmin * w_ratio).clamp(0., initial_w - 1.);
+ b.ymin = (b.ymin * h_ratio).clamp(0., initial_h - 1.);
+ b.xmax = (b.xmax * w_ratio).clamp(0., initial_w - 1.);
+ b.ymax = (b.ymax * h_ratio).clamp(0., initial_h - 1.);
+ }
+ }
+ Ok(bboxes)
+}
+
+fn non_maximum_suppression(bboxes: &mut [Vec<Bbox>], threshold: f32) {
// Perform non-maximum suppression.
for bboxes_for_class in bboxes.iter_mut() {
bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap());
@@ -664,7 +797,7 @@ pub fn report(
let mut drop = false;
for prev_index in 0..current_index {
let iou = iou(&bboxes_for_class[prev_index], &bboxes_for_class[index]);
- if iou > iou_threshold {
+ if iou > threshold {
drop = true;
break;
}
@@ -676,17 +809,61 @@ pub fn report(
}
bboxes_for_class.truncate(current_index);
}
- // Annotate the original image and print boxes information.
+}
+
+pub fn report_pose(
+ pred: &Tensor,
+ img: DynamicImage,
+ w: usize,
+ h: usize,
+ confidence_threshold: f32,
+ nms_threshold: f32,
+) -> Result<Vec<Bbox>> {
+ let (pred_size, npreds) = pred.dims2()?;
+ if pred_size != 17 * 3 + 4 + 1 {
+ candle::bail!("unexpected pred-size {pred_size}");
+ }
+ let mut bboxes = vec![];
+ // Extract the bounding boxes for which confidence is above the threshold.
+ for index in 0..npreds {
+ let pred = Vec::<f32>::try_from(pred.i((.., index))?)?;
+ let confidence = pred[4];
+ if confidence > confidence_threshold {
+ let keypoints = (0..17)
+ .map(|i| KeyPoint {
+ x: pred[3 * i + 5],
+ y: pred[3 * i + 6],
+ mask: pred[3 * i + 7],
+ })
+ .collect::<Vec<_>>();
+ let bbox = Bbox {
+ xmin: pred[0] - pred[2] / 2.,
+ ymin: pred[1] - pred[3] / 2.,
+ xmax: pred[0] + pred[2] / 2.,
+ ymax: pred[1] + pred[3] / 2.,
+ confidence,
+ keypoints,
+ };
+ bboxes.push(bbox)
+ }
+ }
+
+ let mut bboxes = vec![bboxes];
+ non_maximum_suppression(&mut bboxes, nms_threshold);
+ let mut bboxes = bboxes.into_iter().next().unwrap();
+
let (initial_h, initial_w) = (img.height() as f32, img.width() as f32);
let w_ratio = initial_w / w as f32;
let h_ratio = initial_h / h as f32;
- for (class_index, bboxes_for_class) in bboxes.iter_mut().enumerate() {
- for b in bboxes_for_class.iter_mut() {
- crate::console_log!("{}: {:?}", crate::coco_classes::NAMES[class_index], b);
- b.xmin = (b.xmin * w_ratio).clamp(0., initial_w - 1.);
- b.ymin = (b.ymin * h_ratio).clamp(0., initial_h - 1.);
- b.xmax = (b.xmax * w_ratio).clamp(0., initial_w - 1.);
- b.ymax = (b.ymax * h_ratio).clamp(0., initial_h - 1.);
+ for b in bboxes.iter_mut() {
+ crate::console_log!("detected {b:?}");
+ b.xmin = (b.xmin * w_ratio).clamp(0., initial_w - 1.);
+ b.ymin = (b.ymin * h_ratio).clamp(0., initial_h - 1.);
+ b.xmax = (b.xmax * w_ratio).clamp(0., initial_w - 1.);
+ b.ymax = (b.ymax * h_ratio).clamp(0., initial_h - 1.);
+ for kp in b.keypoints.iter_mut() {
+ kp.x = (kp.x * w_ratio).clamp(0., initial_w - 1.);
+ kp.y = (kp.y * h_ratio).clamp(0., initial_h - 1.);
}
}
Ok(bboxes)