summaryrefslogtreecommitdiff
path: root/candle-core/examples/llama/main.rs
blob: 9d70921c881aeac8e5cb2aa85b7f968d1afa9cbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
// An implementation of LLaMA https://github.com/facebookresearch/llama
//
// This is based on nanoGPT in a similar way to:
// https://github.com/Lightning-AI/lit-llama/blob/main/lit_llama/model.py
//
// The tokenizer config can be retrieved from:
// https://huggingface.co/hf-internal-testing/llama-tokenizer/raw/main/tokenizer.json
//
// In order to convert the llama weights to a .npz file, run:
// python examples/llama/convert_checkpoint.py ..../LLaMA/7B/consolidated.00.pth

// TODO: This does not use a batch dimension. If adding it back, be cautious about the
// transposition operations.
use anyhow::{Error as E, Result};
use clap::Parser;
use rand::{distributions::Distribution, SeedableRng};

use candle::{DType, Device, Tensor};
use candle_hub::{api::Api, Repo, RepoType};
use std::collections::HashMap;
use std::sync::{Arc, Mutex};

mod var_store;
mod weights;

const CONTEXT_SIZE: usize = 512;
const USE_KV_CACHE: bool = true;
const START_PROMPT: &str = r"
EDWARD:
I wonder how our princely father 'scaped,
Or whether he be 'scaped away or no
From Clifford's and Northumberland's pursuit:
Had he been ta'en, we should have heard the news;
Had he been slain, we should have heard the news;
Or had he 'scaped, methinks we should have heard
The happy tidings of his good escape.
How fares my brother? why is he so sad?

RICHARD:
I cannot joy, until I be resolved
Where our right valiant father is become.
I saw him in the battle range about;
And watch'd him how he singled Clifford forth.
Methought he bore him in the thickest troop
As doth a lion in a herd of neat;
Or as a bear, encompass'd round with dogs,
Who having pinch'd a few and made them cry,
The rest stand all aloof, and bark at him.
So fared our father with his enemies;
So fled his enemies my warlike father:
Methinks, 'tis prize enough to be his son.
See how the morning opes her golden gates,
And takes her farewell of the glorious sun!
How well resembles it the prime of youth,
Trimm'd like a younker prancing to his love!

EDWARD:
Dazzle mine eyes, or do I see three suns?

RICHARD:
Three glorious suns, each one a perfect sun;
Not separated with the racking clouds,
But sever'd in a pale clear-shining sky.
See, see! they join, embrace, and seem to kiss,
As if they vow'd some league inviolable:
Now are they but one lamp, one light, one sun.
In this the heaven figures some event.

EDWARD:
'Tis wondrous strange, the like yet never heard of.
I think it cites us, brother, to the field,
That we, the sons of brave Plantagenet,
Each one already blazing by our meeds,
Should notwithstanding join our lights together
And over-shine the earth as this the world.
Whate'er it bodes, henceforward will I bear
Upon my target three fair-shining suns.
";

#[allow(dead_code)]
struct Config {
    block_size: usize,
    vocab_size: usize,
    n_layer: usize,
    n_head: usize,
    n_embd: usize,
}

#[allow(dead_code)]
impl Config {
    fn config_7b() -> Self {
        Self {
            block_size: 4096,
            vocab_size: 32000,
            n_layer: 32,
            n_head: 32,
            n_embd: 4096,
        }
    }

    fn config_13b() -> Self {
        Self {
            block_size: 4096,
            vocab_size: 32000,
            n_layer: 40,
            n_head: 40,
            n_embd: 5120,
        }
    }

    fn config_30b() -> Self {
        Self {
            block_size: 4096,
            vocab_size: 32000,
            n_layer: 60,
            n_head: 52,
            n_embd: 6656,
        }
    }

    fn config_65b() -> Self {
        Self {
            block_size: 4096,
            vocab_size: 32000,
            n_layer: 80,
            n_head: 64,
            n_embd: 8192,
        }
    }
}

struct Embedding {
    embeddings: Tensor,
}

impl Embedding {
    fn new(embeddings: Tensor) -> Self {
        Self { embeddings }
    }

    fn forward(&self, indexes: &Tensor) -> Result<Tensor> {
        Ok(Tensor::embedding(indexes, &self.embeddings)?)
    }
}

struct Linear {
    weight: Tensor,
}

impl Linear {
    fn new(weight: Tensor) -> Self {
        Self { weight }
    }

    fn forward(&self, x: &Tensor) -> Result<Tensor> {
        let x = x.matmul(&self.weight.t()?)?;
        Ok(x)
    }
}

struct RmsNorm {
    scale: Tensor,
}

impl RmsNorm {
    fn new(scale: Tensor) -> Self {
        Self { scale }
    }

    fn forward(&self, x: &Tensor) -> Result<Tensor> {
        let x = x.to_dtype(DType::F32)?;
        let (seq_len, hidden_size) = x.shape().r2()?;
        let norm_x = ((&x * &x)?.sum(&[1])? / hidden_size as f64)?;
        let norm_x = norm_x.broadcast_as((seq_len, hidden_size))?;
        let x_normed = (x / (norm_x + 1e-5)?.sqrt()?)?;
        let size = self.scale.shape().r1()?;
        let scale = self
            .scale
            .to_dtype(DType::F32)?
            .broadcast_as((seq_len, size))?;
        let x = (scale * x_normed)?;
        let x = x.to_dtype(DType::F16)?;
        Ok(x)
    }
}

struct Mlp {
    c_fc1: Linear,
    c_fc2: Linear,
    c_proj: Linear,
}

fn silu(xs: &Tensor) -> Result<Tensor> {
    Ok((xs / (xs.neg()?.exp()? + 1.0)?)?)
}

impl Mlp {
    fn new(c_fc1: Linear, c_fc2: Linear, c_proj: Linear) -> Self {
        Self {
            c_fc1,
            c_fc2,
            c_proj,
        }
    }

    fn forward(&self, x: &Tensor) -> Result<Tensor> {
        let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
        self.c_proj.forward(&x)
    }
}

fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
    let shape = mask.shape();
    let on_true = Tensor::new(on_true, &on_false.device())?.broadcast_as(shape.dims())?;
    let m = mask.where_cond(&on_true, on_false)?;
    Ok(m)
}

#[derive(Clone)]
struct Cache {
    masks: Arc<Mutex<HashMap<usize, Tensor>>>,
    #[allow(clippy::type_complexity)]
    kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
    device: Device,
}

impl Cache {
    fn new(config: &Config, device: &Device) -> Self {
        Self {
            masks: Arc::new(Mutex::new(HashMap::new())),
            kvs: Arc::new(Mutex::new(vec![None; config.n_layer])),
            device: device.clone(),
        }
    }

    fn mask(&self, t: usize) -> Result<Tensor> {
        let mut masks = self.masks.lock().unwrap();
        if let Some(mask) = masks.get(&t) {
            Ok(mask.clone())
        } else {
            // TODO: If we support bool or u8 tensors, this would be better.
            let mask: Vec<_> = (0..t)
                .flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
                .collect();
            let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
            masks.insert(t, mask.clone());
            Ok(mask)
        }
    }
}

struct CausalSelfAttention {
    c_attn: Linear,
    c_proj: Linear,
    n_head: usize,
    cache: Cache,
}

impl CausalSelfAttention {
    fn new(c_attn: Linear, c_proj: Linear, n_head: usize, cache: &Cache) -> Self {
        Self {
            c_attn,
            c_proj,
            n_head,
            cache: cache.clone(),
        }
    }

    fn apply_rotary_emb(&self, x: &Tensor, freqs_cis: &Tensor) -> Result<Tensor> {
        let mut dims = x.dims().to_vec();
        let freqs_cis = freqs_cis.narrow(1, freqs_cis.dims()[1] - dims[1], dims[1])?;
        let v = dims.pop().unwrap();
        dims.push(v / 2);
        dims.push(2);
        let x = x.reshape(dims)?;
        let rank = x.rank();
        let re_x = x.narrow(rank - 1, 0, 1)?;
        let im_x = x.narrow(rank - 1, 1, 1)?;
        let re_f = freqs_cis
            .narrow(rank - 1, 0, 1)?
            .broadcast_as(re_x.shape())?;
        let im_f = freqs_cis
            .narrow(rank - 1, 1, 1)?
            .broadcast_as(im_x.shape())?;
        let re = ((&re_x * &re_f)? - (&im_x * &im_f)?)?;
        let im = ((&re_x * &im_f)? + (&im_x * &re_f)?)?;
        let rope = Tensor::cat(&[&re, &im], rank - 1)?;
        let rope = rope.flatten(Some(rope.rank() - 2), None)?;
        Ok(rope)
    }

    fn forward(&self, x: &Tensor, freqs_cis: &Tensor, block_idx: usize) -> Result<Tensor> {
        let (t, c) = x.shape().r2()?;
        let qkv = self.c_attn.forward(x)?;
        let qkv = qkv.to_dtype(DType::F32)?;
        let n_embd = c;
        let q = qkv.narrow(1, 0, n_embd)?;
        let k = qkv.narrow(1, n_embd, n_embd)?;
        let v = qkv.narrow(1, 2 * n_embd, n_embd)?;
        let target_dim = [t, self.n_head, c / self.n_head];
        let k = k.reshape(target_dim.as_slice())?.transpose(0, 1)?;
        let q = q.reshape(target_dim.as_slice())?.transpose(0, 1)?;
        let mut v = v.reshape(target_dim.as_slice())?.transpose(0, 1)?;
        let q = self.apply_rotary_emb(&q, freqs_cis)?;
        let mut k = self.apply_rotary_emb(&k, freqs_cis)?;

        if USE_KV_CACHE {
            let mut cache = self.cache.kvs.lock().unwrap();
            if let Some((cache_k, cache_v)) = &cache[block_idx] {
                k = Tensor::cat(&[cache_k, &k], 1)?;
                v = Tensor::cat(&[cache_v, &v], 1)?;
                let k_seq_len = k.dims()[1];
                if k_seq_len > CONTEXT_SIZE {
                    k = k
                        .narrow(1, k_seq_len - CONTEXT_SIZE, CONTEXT_SIZE)?
                        .contiguous()?
                }
                let v_seq_len = v.dims()[1];
                if v_seq_len > CONTEXT_SIZE {
                    v = v
                        .narrow(1, v_seq_len - CONTEXT_SIZE, CONTEXT_SIZE)?
                        .contiguous()?
                }
            }
            cache[block_idx] = Some((k.clone(), v.clone()))
        }

        let k_shape = k.shape();
        let att = (q.matmul(&k.t()?)? / (*k_shape.dims().last().unwrap() as f64).sqrt())?;
        let mask = self.cache.mask(t)?.broadcast_as(att.shape())?;
        let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
        let att = att.softmax(att.rank() - 1)?;
        // Convert to contiguous as matmul doesn't support strided vs for now.
        let y = att.matmul(&v.contiguous()?)?;
        let y = y.transpose(0, 1)?.reshape(&[t, c])?;
        let y = y.to_dtype(DType::F16)?;
        let y = self.c_proj.forward(&y)?;
        Ok(y)
    }
}

struct Block {
    rms_1: RmsNorm,
    attn: CausalSelfAttention,
    rms_2: RmsNorm,
    mlp: Mlp,
}

impl Block {
    fn new(rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp) -> Self {
        Self {
            rms_1,
            attn,
            rms_2,
            mlp,
        }
    }

    fn forward(&self, x: &Tensor, freqs_cis: &Tensor, block_idx: usize) -> Result<Tensor> {
        let x = (self
            .attn
            .forward(&self.rms_1.forward(x)?, freqs_cis, block_idx)?
            + x)?;
        let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + x)?;
        Ok(x)
    }
}

struct Llama {
    wte: Embedding,
    blocks: Vec<Block>,
    ln_f: RmsNorm,
    lm_head: Linear,
}

impl Llama {
    fn new(wte: Embedding, blocks: Vec<Block>, ln_f: RmsNorm, lm_head: Linear) -> Self {
        Self {
            wte,
            blocks,
            ln_f,
            lm_head,
        }
    }

    fn forward(&self, x: &Tensor, freqs_cis: &Tensor) -> Result<Tensor> {
        // TODO: Support for mini-batches? (i.e. r2)
        let t = x.shape().r1()?;
        let mut x = self.wte.forward(x)?;
        for (block_idx, block) in self.blocks.iter().enumerate() {
            x = block.forward(&x, freqs_cis, block_idx)?;
        }
        let x = self.ln_f.forward(&x)?;
        let x = x.narrow(0, t - 1, 1)?;
        let logits = self.lm_head.forward(&x)?;
        let logits = logits.to_dtype(DType::F32)?;
        let (b, vocab_size) = logits.shape().r2()?;
        assert_eq!(b, 1);
        Ok(logits.reshape(vocab_size)?)
    }
}

fn precompute_freqs_cis(config: &Config, device: &Device) -> Result<Tensor> {
    let seq_len = CONTEXT_SIZE;
    let n_elem = config.n_embd / config.n_head;
    let theta: Vec<_> = (0..n_elem)
        .step_by(2)
        .map(|i| 1f32 / 10000f32.powf(i as f32 / n_elem as f32))
        .collect();
    let arange: Vec<_> = (0..seq_len).map(|c| c as f32).collect();
    let theta = Tensor::new(theta.as_slice(), device)?;
    let arange = Tensor::new(arange.as_slice(), device)?;
    let idx_theta = arange
        .reshape((arange.elem_count(), 1))?
        .matmul(&theta.reshape((1, theta.elem_count()))?)?;
    let shape = [1, seq_len, n_elem / 2, 1];
    let idx_theta_cos = idx_theta.cos()?.reshape(&shape)?;
    let idx_theta_sin = idx_theta.sin()?.reshape(&shape)?;
    let last_dim = idx_theta_cos.rank() - 1;
    Ok(Tensor::cat(&[&idx_theta_cos, &idx_theta_sin], last_dim)?)
}

#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
    /// Run on CPU rather than on GPU.
    #[arg(long)]
    cpu: bool,

    /// Use npy instead of safetensors
    #[arg(long)]
    npy: Option<String>,

    /// The temperature used to generate samples.
    #[arg(long)]
    temperature: Option<f64>,

    /// The seed to use when generating random samples.
    #[arg(long, default_value_t = 299792458)]
    seed: u64,

    /// The length of the sample to generate (in tokens).
    #[arg(long, default_value_t = 100)]
    sample_len: usize,
}

#[tokio::main]
async fn main() -> Result<()> {
    use tokenizers::Tokenizer;

    let args = Args::parse();
    let device = if args.cpu {
        Device::Cpu
    } else {
        Device::new_cuda(0)?
    };
    let config = Config::config_7b();
    let cache = Cache::new(&config, &device);
    let start = std::time::Instant::now();
    let (llama, tokenizer_filename) = match args.npy {
        Some(npy) => {
            println!("building the model (NPY)");
            let weights = Llama::load_npy(&device, &npy, &cache, &config)?;
            let token_path = std::path::Path::new("llama-tokenizer.json").to_path_buf();
            (weights, token_path)
        }
        None => {
            let api = Api::new()?;
            let repo = Repo::new("Narsil/amall-7b".to_string(), RepoType::Model);
            println!("building the model");
            let tokenizer_filename = api.get(&repo, "tokenizer.json").await?;
            let mut filenames = vec![];
            for rfilename in [
                "model-00001-of-00002.safetensors",
                "model-00002-of-00002.safetensors",
            ] {
                let filename = api.get(&repo, rfilename).await?;
                filenames.push(filename);
            }

            println!("building the model (SF)");
            (
                Llama::load(&device, &filenames, &cache, &config)?,
                tokenizer_filename,
            )
        }
    };
    println!("Loaded in {:?}", start.elapsed());
    let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
    let mut tokens = tokenizer
        .encode(START_PROMPT, true)
        .map_err(E::msg)?
        .get_ids()
        .to_vec();

    println!("pre-computing the positional embeddings");
    let freqs_cis = precompute_freqs_cis(&config, &device)?;
    println!("starting the inference loop");
    let mut new_tokens = vec![];
    let mut rng = rand::rngs::StdRng::seed_from_u64(args.seed);
    let start_gen = std::time::Instant::now();
    for index in 0..args.sample_len {
        let start_gen = std::time::Instant::now();
        let context_size = if USE_KV_CACHE && index > 0 {
            1
        } else {
            CONTEXT_SIZE
        };
        let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
        let input = Tensor::new(ctxt, &device)?;
        let logits = llama.forward(&input, &freqs_cis)?;

        let next_token = if let Some(temperature) = args.temperature {
            println!("Sampling with temperature {temperature:?}");
            let prs = (&logits / temperature)?.softmax(logits.rank() - 1)?;
            let logits_v: Vec<f32> = prs.to_vec1()?;
            let distr = rand::distributions::WeightedIndex::new(&logits_v)?;

            distr.sample(&mut rng) as u32
        } else {
            let logits_v: Vec<f32> = logits.to_vec1()?;
            logits_v
                .iter()
                .enumerate()
                .max_by(|(_, u), (_, v)| u.total_cmp(v))
                .map(|(i, _)| i as u32)
                .unwrap()
        };
        tokens.push(next_token);
        new_tokens.push(next_token);
        println!("> {:?}", start_gen.elapsed());
        println!(
            "{} token: {} '{}'",
            index + 1,
            next_token,
            tokenizer.decode(vec![next_token], true).map_err(E::msg)?
        );
    }
    let dt = start_gen.elapsed();
    println!(
        "{} tokens generated ({} token/s)\n----\n{}\n----",
        args.sample_len,
        args.sample_len as f64 / dt.as_secs_f64(),
        tokenizer.decode(new_tokens, true).map_err(E::msg)?
    );
    Ok(())
}